3 resultados para Talvio, Tuukka: Coins and coin finds in Finland AD 800-1200
em Publishing Network for Geoscientific
Resumo:
In September-October 1998, during Cruise 14 of R/V Akademik Fedorov to the Barents Sea, in the region of 82° N between the Spitsbergen and Novaya Zemlya archipelagos samples of snow and ice were collected within four polygons. By means of atomic absorption with an electothermal atomizer (onboard the ship) in filtered (dissolved form) and unfiltered (sum of dissolved and particulate forms) samples of snow melt and ice melt concentrations of Fe, Mn, Cu, Cr, Ni, Co, Pb, and Cd were determined in order to estimate level of potential contamination of snow and ice with these metals. Excluding data on Ni, Cd (and probably Cu) in ice that were regarded to be unsatisfactory because of probable contamination of the ice samples during drilling concentrations of all the elements in snow and ice of the northern part of the Barents Sea appeared to be close to their background values or below. An attempt to identify the main sources of metal supply to snow from the atmosphere by comparison of ratios of metal particulate form to total content in snow of the Barents Sea and the same ratios in snow samples from clean regions of Finland and from contaminated areas of the Kola Peninsula showed that aerosols in the area of the expedition were supplied into the Barents Sea atmosphere from different sources, both natural and anthropogenic.
Resumo:
The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.
(Table 4) Fe, Mn, P, As, Cd, and Pb concentrations in the silt-pelitic and pelitic oozes of Core Kas