6 resultados para TST

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The short sediment temperature probe were deployed and recovered with the LOOME observatory in 2009 and 2010, respectively. In addition to temperature, the loggers also recorded bottom water pressure at a sampling interval of 20 minutes. Even though the data obtained from the short temperature probe was strongly disturbed by leakage through a corroded connector, the data shows clearly that the probe was pulled out of the sediment on October 26, 2009, presumably by advancing mud flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to 650 mmol L**-1 at 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at 60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (dD-CH4 = -170.8 per mil (SMOW), d13C-CH4 = -61.0 per mil (V-PDB), d13C-C2H6 = -44.0 per mil (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 x 10**6 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glauconite is generally agreed to be a reliable indicator of low sedimentation rate, but little systematic work has been done to specify the role of glauconite in a sequence-stratigraphic framework. Ocean Drilling Program Leg 174A recovered a good record of late Tertiary sediments along the shelf edge of the New Jersey US Atlantic margin, and glauconite was present in many intervals of the cores, sometimes in vertical proximity to sequence boundaries. Leg 174A glauconite was analyzed with binocular microscope, XRD and SEM to determine the percent of potassium and degree of maturity in order to relate occurrence to depositional environment. Seismic data were used to locate sequence boundaries, and percent glauconite was visually estimated. Glauconite samples from Site 1073 were found to have formed within a lowstand systems tract (LST), and as part of a distal condensed section (CS) within a transgressive systems tract (TST). These results are comparable to those from nearby Site 903 of Leg 150, which indicate a similar depositional setting for glauconite. Glauconites at shelf Sites 1071 and 1072 likely formed in the TST as well. Onshore, glauconite occurs mainly in transgressive systems tracts. The Miocene appears to be the upper limit of glauconite formation onshore. As the magnitude of sea-level change decreased, present onshore locations became too nearshore to maintain sediment-free environments, and the zone of glauconite deposition moved seaward. The same process did not occur offshore until the Plio-Pleistocene. Low subsidence-rate margins such as the US Atlantic are subject more to the variations of sea-level than to changes in sediment supply, tectonics, or other factors influencing their depositional patterns. Although glauconite occurrence is widespread in the stratigraphic record, this study demonstrates that for low subsidence-rate margins, primary deposition of glauconite is largely restricted to the TST.