3 resultados para TOOL WEAR CHARACTERISTICS

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeted sampling on the Dolgovskoy Mound (northern Shatsky Ridge) revealed the presence of spectacular laterally extensive and differently shaped authigenic carbonates. The sampling stations were selected based on sidescan sonar and profiler images that show patchy backscatter and irregular and discontinuous reflections in the near subsurface. The interpretation of acoustic data from the top part of the mound supports the seafloor observations and the sampling that revealed the presence of a complex subsurface plumbing system characterized by carbonates and gas. The crusts sampled consist of carbonate cemented layered hemipelagic sedimentary Unit 1 associated with several centimetres thick microbial mats. Three different carbonate morphologies were observed: (a) tabular slabs, (b) subsurface cavernous carbonates consisting of void chambers up to 20 cm**3 in size and (c) chimney and tubular conduits vertically oriented or forming a subhorizontal network in the subsurface. The methanogenic origin of the carbonates is established based on visual observations of fluids seepage structures, 13C depletion of the carbonates (d13C varying between -36.7 per mil and -27.4 per mil), and by thin carbonate layers present within the thick microbial mats. Laboratory experiments with a Hele-Shaw cell were conducted in order to simulate the gas seepage through contrasting grain size media present on the seafloor. Combined petrography, visual observations and sandbox simulations allowed a characterization of the dynamics and the structures of the plumbing system in the near subsurface. Based on sample observations and the experiments, three observed morphologies of authigenic carbonates are interpreted, respectively, as (a) Darcian porous flow through the finely laminated clayey/coccolith-rich layers, (b) gas accumulation chambers at sites where significant fluid escape was impeded by thicker clayey layers forming the laminated Unit1 and (c) focussed vertical fluid venting and subhorizontal migration of overpressured fluids released from (b). The Hele-Shaw cell experiments represent a promising tool for investigating shallow fluid flow pathways in marine systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pressure core barrel (PCB), developed by the Deep Sea Drilling Project, was used successfully to recover, at in situ pressure, sediments of the Blake Outer Ridge, offshore the southeastern United States. The PCB is a unique, wire-line tool, 10.4 m long, capable of recovering 5.8 m of core (5.8 cm in diameter), maintained at or below in situ pressures of 34.4 million Pascals (MPa), and 1.8 m of unpressurized core (5.8 cm in diameter). All excess internal pressure above the operating pressure of 34.4 MPa is automatically vented off as the barrel is retrieved. The PCB was deployed five times at DSDP Site 533 where geophysical evidence suggests the presence of gas hydrates in the upper 600 m of sediment. Three cores were obtained holding average in situ pressures of 30 MPa. Two other cores did not maintain in situ pressures. Three of the five cores were intermittently degassed at varying intervals of time, and portions of the vented gas were collected for analysis. Pressure decline followed paths indicative of gas hydrates and/or dissolved gas. The released gas was dominantly methane (usually greater than 90%), along with higher molecular-weight hydrocarbon gases and carbon dioxide. During degassing the ratio of methane to ethane did not vary significantly. On the other hand, concentrations of higher molecular-weight hydrocarbon gases increased, as did carbon dioxide concentrations. The results from the PCB experiments provide tentative but equivocal evidence for the presence of .gas hydrates at Site 533. The amount of gas hydrate indicated is small. Nevertheless, this work represents the first successful study of marine gas hydrates utilizing the PCB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.