5 resultados para THREADING DISLOCATION
em Publishing Network for Geoscientific
Resumo:
This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.
Resumo:
Quartz Crystallographic Preferred Orientation (CPO) patterns are most commonly a result of deformation by dislocation creep. We investigated whether Dissolution-Precipitation Creep (DPC) a process that occur at lower differential stresses and temperatures, may result in CPO in quartz. Within the Purgatory Conglomerate, DPC led to quartz dissolution along cobble surfaces perpendicular to the shortening direction, and quartz precipitation in overgrowths at the ends of the cobbles (strain shadows), parallel to the maximum extension direction. The Purgatory Conglomerate is part of the SE Narragansett basin where strain intensity increases from west to east and is associated with top-to-the-west transport and folding during the Alleghanian orogeny. Quartz c-axis orientations as revealed by Electron Backscatter Diffraction (EBSD) methods, were random in all analyzed domains within the cobbles and strain shadows irrespective of the intensity of strain or metamorphic grade of the sample. Quartz dissolution probably occurred exclusively along the cobbles' margins, leaving the remaining grains unaffected by DPC. The fact that quartz precipitated in random orientations may indicate that the strain shadows were regions of little or no differential stress.
Resumo:
The ultimate composition of any sandstone is affected by a host of primary and secondary factors, including the lithologies present in source terranes, climate, depositional environment and diagenesis. In the case of a subduction complex, however, unequivocal identification of detrital provenance may be impossible because of the cumulative effects of tectonic and sedimentary transport. Long-distance sedimentary transport (> 1000 km) is common within trenches, and abyssal-plain turbidites can be tectonically transported for long distances as the underlying oceanic basement drifts towards a subduction front. Post-accretionary displacement can occur as a consequence of strike-slip faulting, and the total distance of tectonic dislocation may reach several thousand kilometers. The present-day Aleutian forearc region (North Pacific Ocean) illustrates many of the "problems" which typify subduction zones. Several petrologic suites can be identified, and there are significant variations in detrital modes in both time and space. The Aleutian region serves as a sobering modern analog for accreted rock units such as the Franciscan Complex of California, where intercalations of discrete sandstone suites have been noted. In the absence of paleomagnetic control, interpretations of sediment provenance within ancient subduction complexes probably should be restricted to the generic level.
Resumo:
Apatite (U-Th-Sm)/He (AHe) thermochronology is increasingly used for reconstructing geodynamic processes of the upper crust and the surface. Results of AHe thermochronology, however, are often in conflict with apatite fission track (AFT) thermochronology, yielding an inverted age-relationship with AHe dates older than AFT dates of the same samples. This effect is mainly explained by radiation damage of apatite, either impeding He diffusion or causing non-thermal annealing of fission tracks. So far, systematic age inversions have only been described for old and slowly cooled terranes, whereas for young and rapidly cooled samples 'too old' AHe dates are usually explained by the presence of undetected U and/or Th-rich micro-inclusions. We report apatite (U-Th-Sm)/He results for rapidly cooled volcanogenic samples deposited in a deep ocean environment with a relatively simple post-depositional thermal history. Robust age constraints are provided independently through sample biostratigraphy. All studied apatites have low U contents (< 5 ppm on average). While AFT dates are largely in agreement with deposition ages, most AHe dates are too old. For leg 43, where deposition age of sampled sediment is 26.5-29.5 Ma, alpha-corrected average AHe dates are up to 45 Ma, indicating overestimations of AHe dates up to 50%. This is explained by He implantation from surrounding host U-Th rich sedimentary components and it is shown that AHe dates can be "corrected" by mechanically abrading the outer part of grains. We recommend that particularly for low U-Th-apatites the possibility of He implantation should be carefully checked before considering the degree to which the alpha-ejection correction should be applied.
Resumo:
New results of geomorphological, seismoacoustic, and lithological investigations on the upper continental slope off the Arkhipo-Osipovka Settlement are presented. Here, a large submarine slump was discovered by seismic survey in 1998. The assumed slump body, up to 200 m thick, rises 50-60 m above the valley floor that cuts the slope. Recent semiliquid mud that overlies laminated slope sediments with possible slump deformations flows down in the valley thalweg. Radiocarbon age inversion recorded in a Holocene sediment section of shelf facies recovered from the upper slope points to the gravity dislocation of sediments.