24 resultados para Synchrony
em Publishing Network for Geoscientific
Resumo:
A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.
Resumo:
In this paper we present a paleoceanographic reconstruction of the southwestern South Atlantic for the past 13 kyr based on faunal and isotopic analysis of planktonic foraminifera from a high-resolution core retrieved at the South Brazil Bight continental slope. Our record indicates that oceanographic changes in the southwestern South Atlantic during the onset of the Holocene were comparable in strength to those that occurred during the Younger Dryas. Full interglacial conditions started abruptly after 8.2 kyr BP with a sharp change in faunal composition and surface hydrography (SST and SSS). Part of the observed events may be explained in terms of changes in thermohaline circulation while the other part suggests a dominant role of winds. Our data indicate that during the Early Holocene upwelling was significantly strengthened in the South Brazil Bight promoting high productivity and preventing the establishment of the typically interglacial menardiiform species. In general terms, oceanographic changes recorded by core KF02 occurred in synchrony with Antarctica's climate.
Resumo:
Sclerochronological records of interannual shell growth variability were established for eight modern shells (26 to 163 years of age) of the bivalve Arctica islandica, which were sampled at one site in the inner German Bight. The records indicate generally low synchrony between individuals. Spectral analysis of the whole 163-yr masterchronology indicated a cyclic pattern with a period of 5 and 7 years. The masterchronology correlated poorly to time series of environmental parameters over the last 90 years. High environmental variability in time and space of the dynamic and complex German Bight hydrographic system results in an extraordinarily high noise' level in the shell growth pattern of Arctica islandica.
Resumo:
One of the most abrupt and yet unexplained past rises in atmospheric CO2 (10 p.p.m.v. in two centuries) occurred in quasi-synchrony with abrupt northern hemispheric warming into the Bølling/Allerød, 14,600 years ago. Here we use a U/Th-dated record of atmospheric D14C from Tahiti corals to provide an independent and precise age control for this CO2 rise. We also use model simulations to show that the release of old (nearly 14C-free) carbon can explain these changes in CO2 and D14C. The D14C record provides an independent constraint on the amount of carbon released (125 Pg C). We suggest, in line with observations of atmospheric CH4 and terrigenous biomarkers, that thawing permafrost in high northern latitudes could have been the source of carbon, possibly with contribution from flooding of the Siberian continental shelf during meltwater pulse 1A. Our findings highlight the potential of the permafrost carbon reservoir to modulate abrupt climate changes via greenhouse-gas feedbacks.
Resumo:
Six deep sea cores from the eastern equatorial Pacific (EEP) were analyzed for planktonic foraminifera and stable isotopes in order to reconstruct sea surface temperatures (SST) for the last 40 ka. South of the Equatorial Front the abundance of Globorotalia inflata increased, and SST decreased by >5°C (core ODP846B), creating a stronger SST meridional gradient and advection of the Peru Current than present for the ~16-35 ka interval. A sharper SST meridional gradient forced stronger Choco jet events and a moisture increase in western Colombia, which supplied, through the San Juan River and the south-flowing equatorial and the Peru-Chile countercurrents, abundant hemipelagic quartz over the northern Peru basin (core TR163-31B). The Choco jet, and its associated mesoscale convective cells, provoked an increase in snow precipitation over the Central Cordillera of Colombia and the advance of the Murillo glacier. In synchrony with the intensified Choco jet events, the "dry island" effect over the Eastern Cordillera of Colombia intensified, and the level of Fuquene Lake dropped.
Resumo:
The assumption of synchrony of first and last occurrences of fossil taxa can be tested using graphic correlation procedures which, by allowing measured stratigraphic sections to be compared on a common depth scale, make it possible to develop a correlation model which integrates information from a number of cores. The strategy of the test presented here is to use a graphic correlation model that is based on data from the Atlantic (Deep Sea Drilling Project (DSDP) sites 502, 516A) and north Pacific (DSDP site 577A) as a basis for determining to what extent fossil datums in the southwest Pacific are synchronous. First and last occurrences of Pliocene calcareous nannofossils and planktonic foraminifers have been compared in five DSDP cores from the southwest Pacific ocean (sites 586, 587, 588, 590A, and 592). All cores were recovered using hydraulic piston coring technology, which assures the best recovery and minimal disturbance. Most of these cores contain abundant, well-preserved foraminifers and nannofossils, as well as a partial record of many of the expected magnetic polarity reversals in this part of the section. To assure taxonomic consistency, all taxonomic identifications were made by the author. Graphic correlation of this data set suggests that several important biostratigraphic markers are highly diachronous. For example, this study confirms that Globorotalia truncatulinoides first occurs at approximately 2.4 Ma between 20° and 35° south latitude in the southwest Pacific, approximately 0.5 m.y. earlier than it is found elsewhere in the Atlantic and Pacific. Other datums, such as the last occurrence of Discoaster brouweri, are essentially synchronous. These findings suggest that biostratigraphic models based on the assumption of synchrony of first and last occurrences of fossil taxa may be incorrect. Biostratigraphic models created with the Graphic Correlation method offer an opportunity to examine the biogeographic dimensions of origination, migration, and extinction of planktonic taxa.
Resumo:
An Eocene-Oligocene oxygen and carbon isotope history based on planktonic and benthic foraminifers from Deep Sea Drilling Project Leg 71 cores has been constructed for the Maurice Ewing Bank of the eastern Falkland Plateau, Southwest Atlantic Ocean. Specifically, the cores cover portions of the middle Eocene, upper Eocene, and lower Oligocene. Surface water isotopic temperatures postulated for the middle Eocene at Site 512 fluctuated within about four degrees but generally averaged about 9°C. Bottom isotopic temperatures at Site 512 (water depth, 1846 m) were generally a degree lower than surface water temperatures. Surface water isotopic temperatures at Site 511 initially averaged about 11°C during the late Eocene, but dropped to an average of 7°C in the early Oligocene. Bottom isotopic temperatures at Site 511 (water depth, 2589 m) generally record temperatures between 12.5°C and 8°C, similar to the range in the surface water isotopic temperatures. During the early Oligocene, bottom isotopic temperatures dropped sharply and averaged about 2°C (very close to present-day values). Surface water temperature values also decreased to an average of about 7°C, therefore leading to a significant divergence between surface and bottom water isotopic temperatures during the early Oligocene. Comparisons among Southern Ocean DSDP Sites 511, 512, and 277, and between these and other DSDP sites from central and northern latitudes (Sites 44, 167, 171, 292, 357, 398, 119, and 401) show that much of the Eocene was characterized by relatively warm temperatures until sometime in either the middle Eocene, late Eocene, or early Oligocene. At each site, conspicuous 18O enrichments occur in both the benthic and planktonic foraminifers over a relatively short period of time. Although a general trend toward a climatic deterioration is evident, the density of data points among the various studies is still too sparse to determine either synchrony or time-transgression between the major isotopic events. A close correlation could be made between the Site 511 oxygen isotope temperature curve and paleoclimatic trends derived independently from radiolarian studies. The sharp temperature drop and the divergence between bottom and surface water temperatures during the early Oligocene apparently reflect a major expansion of the antarctic water mass. The migration of the boundary between the subantarctic and antarctic water masses over the site at this time would account in part for the sharp temperature changes. Sharp changes of this nature would not necessarily be noted in other geographic areas, particularly those to the north which have different oceanographic regimes.
Resumo:
This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequencies to a numerical density using an estimate of krill target strength. Krill data were vertically integrated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g/m**2) and translated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67°N, (2) north of Paamiut at 63°N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g/m**2, SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g/m**2, SD 23 to 19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 x 10**9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most predictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energetically optimal for baleen whales to forage on krill in West Greenland.
Resumo:
Corresponding millennial-scale climate changes have been reported from the North Atlantic region and from east Asia for the last glacial period on independent timescales only. To assess their degree of synchrony we suggest interpreting Greenland ice core dust parameters as proxies for the east Asian monsoon systems. This allows comparing North Atlantic and east Asian climate on the same timescale in high resolution ice core data without relative dating uncertainties. We find that during Dansgaard-Oeschger events North Atlantic region temperature and east Asian storminess were tightly coupled and changed synchronously within 5-10 years with no systematic lead or lag, thus providing instantaneous climatic feedback. The tight link between North Atlantic and east Asian glacial climate could have amplified changes in the northern polar cell to larger scales. We further find evidence for an early onset of a Younger Dryas-like event in continental Asia, which gives evidence for heterogeneous climate change within east Asia during the last deglaciation.
Resumo:
A high-resolution multiproxy study performed on a marine record from SE Pacific off southern South America was used to reconstruct past regional environmental changes and their relation to global climate, particularly to El Niño/Southern Oscillation (ENSO) phenomenon during the last 2200 years. Our results suggest a sustained northward shift in the position of the zonal systems, i.e. the Southern Westerly Wind belt and the Antarctic Circumpolar Current, which occurred between 1300 and 750 yr BP. The synchrony of the latitudinal shift with cooling in Antarctica and reduced ENSO activity observed in several marine and terrestrial archives across South America suggests a causal link between ENSO and the proposed displacement of the zonal systems. This shift might have acted as a positive feedback to more La Niña-like conditions between 1300 and 750 yr BP by steepening the hemispheric and tropical Pacific zonal sea surface temperature gradient. This scenario further suggests different boundary conditions for ENSO before 1300 and after 750 yr BP.
Resumo:
An essentially complete Paleogene record was recovered on the Central and Southern Kerguelen plateaus (55°-59°S) in a calcareous biofacies. Recovery deteriorated in the middle Eocene and down to the upper Paleocene because of the presence of interbedded cherts and chalks. The stratigraphic distribution of about 70 taxa of planktonic foraminifers recovered at Sites 747-749 is reported in this paper. Faunas exhibited fairly high diversity (approximately 20-25 species) in the early Eocene, followed by a gradual reduction in diversity in the middle Eocene. A brief incursion of tropical keeled morozovellids occurred near the Paleocene/Eocene boundary, similar to that recorded on the Maud Rise (ODP Sites 689 and 690). The high-latitude Paleogene zonal scheme developed for ODP Leg 113 sites has been adopted (with minor modifications) for the lower Eocene-Oligocene part of the Kerguelen Plateau record. A representative Oligocene (polarity chronozones 7-13) and late Eocene-late middle Eocene (questionably polarity chronozones 16-18) magnetostratigraphic record has allowed the calibration of several biostratigraphic datum levels to the standard Global Polarity Time Scale (GPTS) and established their essential synchrony between low and high latitudes.
Resumo:
A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.
Resumo:
Quantitative analysis of upper Eocene-upper Oligocene calcareous nannofossil assemblages from five Ocean Drilling Program sites in the Atlantic and Indian Ocean sectors of the Southern Ocean reveals an abrupt increase in cool-water taxa at the top of magnetic Subchron C13R ca. 35.9 Ma, coincident with an enrichment of ~1? d18O in the planktonic foraminifers at these sites. The synchrony of the abrupt increase in cool-water taxa in the Southern Ocean renders this event a useful biostratigraphic datum at southern high latitudes. This earliest Oligocene cool-water taxa increase was the sharpest and largest during the late Eocene-late Oligocene interval and indicates a drop in surface-water temperature of more than 3°C in the Southern Ocean. This suggests that the earliest Oligocene d18O shift represents primarily a temperature signal; a small portion (~0.2?) is attributable to a global ice-volume increase.
Resumo:
Constraining the nature of Antarctic Ice Sheet (AIS) response to major past climate changes may provide a window onto future ice response and rates of sea level rise. One approach to tracking AIS dynamics, and differentiating whole system versus potentially heterogeneous ice sheet sector changes, is to integrate multiple climate proxies for a specific time slice across widely distributed locations. This study presents new iceberg-rafted debris (IRD) data across the interval that includes Marine Isotope Stage 31 (MIS 31: 1.081-1.062 Ma, a span of ~19 kyr; Lisiecki and Raymo, 2005), which lies on the cusp of the mid-Brunhes climate transition (as glacial cycles shifted from ~41,000 yr to ~100,000 yr duration). Two sites are studied - distal Ocean Drilling Program (ODP) Leg 177 Site 1090 (Site 1090) in the eastern subantarctic sector of the South Atlantic Ocean, and proximal ODP Leg 188 Site 1165 (Site 1165), near Prydz Bay, in the Indian Ocean sector of the Antarctic margin. At each of these sites, MIS 31 is marked by the presence of the Jaramillo Subchron (0.988-1.072 Ma; Lourens et al., 2004) which provides a time-marker to correlate these two sites with relative precision. At both sites, records of multiple climate proxies are available to aid in interpretation. The presence of IRD in sediments from our study areas, which include garnets indicating a likely East Antarctic Ice Sheet (EAIS) origin, supports the conclusion that although the EAIS apparently withdrew significantly over MIS 31 in the Prydz Bay region and other sectors, some sectors of the EAIS must still have maintained marine margins capable of launching icebergs even through the warmest intervals. Thus, the EAIS did not respond in complete synchrony even to major climate changes such as MIS 31. Further, the record at Site 1090 (supported by records from other subantarctic locations) indicates that the glacial MIS 32 should be reduced to no more than a stadial, and the warm interval of Antarctic ice retreat that includes MIS 31 should be expanded to MIS 33-31. This revised warm interval lasted about 52 kyr, in line with several other interglacials in the benthic d18O records stack of Lisiecki and Raymo (2005), including the super-interglacials MIS 11 (duration of 50 kyr) and MIS 5 (duration of 59 kyr). The record from Antarctica-proximal Site 1165, when interpreted in accord with the record from ANDRILL-1B, indicates that in these southern high latitude sectors, ice sheet retreat and the effects of warming lasted longer than at Site 1090, perhaps until MIS 27. In the current interpretations of the age models of the proximal sites, ice sheet retreat began relatively slowly, and was not really evident until the start of MIS 31. In another somewhat more speculative interpretation, ice sheet retreat began noticeably with MIS 33, and accelerated during MIS 31. Ice sheet inertia (the lag-times in the large-scale responses of major ice sheets to a forcing) likely plays an important part in the timing and scale of these events in vulnerable sectors of the AIS.