3 resultados para Swash

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sedimentary architecture of polar gravel-beach ridges is presented and it is shown that ridge internal geometries reflect past wave-climate conditions. Ground-penetrating radar (GPR) data obtained along the coasts of Potter Peninsula (King George Island) show that beach ridges unconformably overlie the prograding strand plain. Development of individual ridges is seen to result from multiple storms in periods of increased storm-wave impact on the coast. Strand-plain progradation, by contrast, is the result of swash sedimentation at the beach-face under persistent calm conditions. The sedimentary architecture of beach ridges in sheltered parts of the coast is characterized by seaward-dipping prograding beds, being the result of swash deposition under stormy conditions, or aggrading beds formed by wave overtopping. By contrast, ridges exposed to high-energy waves are composed of seaward- as well as landward-dipping strata, bundled by numerous erosional unconformities. These erosional unconformities are the result of sediment starvation or partial reworking of ridge material during exceptional strong storms. The number of individual ridges which are preserved from a given time interval varies along the coast depending on the morphodynamic setting: sheltered coasts are characterized by numerous small ridges, whereas fewer but larger ridges develop on exposed beaches. The frequency of ridge building ranges from decades in the low-energy settings up to 1600 years under high-energy conditions. Beach ridges in the study area cluster at 9.5, 7.5, 5.5, and below 3.5 m above the present-day storm beach. Based on radiocarbon data, this is interpreted to reflect distinct periods of increased storminess and/or shortened annual sea-ice coverage in the area of the South Shetland Islands for the times around 4.3, c. 3.1, 1.9 ka cal BP, and after 0.65 ka cal BP. Ages further indicate that even ridges at higher elevations can be subject to later reactivation and reworking. A careful investigation of the stratigraphic architecture is therefore essential prior to sampling for dating purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environment of ebb-tidal deltas between barrier island systems is characterized by a complex morphology with ebb- and flood-dominated channels, shoals and swash bars connecting the ebb-tidal delta platform to the adjacent island. These morphological features reveal characteristic surface sediment grain-size distributions and are subject to a continuous adaptation to the prevailing hydrodynamic forces. The mixed-energy tidal inlet Otzumer Balje between the East Frisian barrier islands of Langeoog and Spiekeroog in the southern North Sea has been chosen here as a model study area for the identification of relevant hydrodynamic drivers of morphology and sedimentology. We compare the effect of high-energy, wave-dominated storm conditions to mid-term, tide-dominated fair-weather conditions on tidal inlet morphology and sedimentology with a process-based numerical model. A multi-fractional approach with five grain-size fractions between 150 and 450 µm allows for the simulation of corresponding surface sediment grain-size distributions. Net sediment fluxes for distinct conditions are identified: during storm conditions, bed load sediment transport is generally onshore directed on the shallower ebb-tidal delta shoals, whereas fine-grained suspended sediment bypasses the tidal inlet by wave-driven currents. During fair weather the sediment transport mainly focuses on the inlet throat and the marginal flood channels. We show how the observed sediment grain-size distribution and the morphological response at mixed-energy tidal inlets are the result of both wave-dominated less frequent storm conditions and mid-term, tide-dominant fair-weather conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SST) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proven a good predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale, which are only poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. In spite of a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large amplitude internal waves (LAIW) alleviated heating and mitigated coral bleaching and mortality in shallow LAIW-exposed waters. In LAIW-sheltered waters, by contrast, bleaching susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW, which are ubiquitous in tropical stratified waters, benefit coral reefs during thermal stress and provide local refugia for bleaching susceptible corals. The swash zones of LAIW may thus be important, so far overlooked, conservation areas for the maintainance of coral diversity in a warming climate. The consideration of LAIW can significantly improve coral bleaching predictions and can provide a valuable tool for coral reef conservation and management.