4 resultados para Sutures.
em Publishing Network for Geoscientific
Resumo:
Tests of the planktonic foraminifer Globigerinoides ruber (white; d'Orbigny) have become a standard tool for reconstructing past oceanic environments. Paleoceanographers often utilize the Mg/Ca ratios of the foraminiferal tests for reconstructing low-latitude ocean glacial-interglacial changes in sea surface temperatures (SST). We report herein a comparison of Mg/Ca measurements on sample pairs (n = 20) of two G. ruber (white) morphotypes (G. ruber sensu stricto (s.s.) and G. ruber sensu lato (s.l.)) from surface and downcore samples of the western Pacific and Indian Oceans. G. ruber s.s. refers to specimens with spherical chambers sitting symmetrically over previous sutures with a wide, high arched aperture, whereas G. ruber s.l. refers to a more compact test with a diminutive final chamber and small aperture. The G. ruber s.s. specimens generally show significantly higher Mg/Ca ratios compared to G. ruber s.l. Our results from the Mg/Ca ratio analysis suggest that G. ruber s.l. specimens precipitated their shells in slightly colder surface waters than G. ruber s.s. specimens. This conclusion is supported by the differences in delta18O and delta13C values between the two morphotypes. Although it is still unclear if these two morphotypes represent phenotypic variants or sibling species, our findings seem to support the hypothesis of depth and/or seasonal allopatry within a single morphospecies.
Resumo:
In the southeast of the Bolshoi Lyakhovsky Island there are outcrops of tectonic outliers composed of low-K medium-Ti tholeiitic basic rocks represented by low altered pillow basalts, as well as by their metamorphosed analogs: amphibolites and blueschists. The rocks are depleted in light rare-earth elements and were melted out of a depleted mantle source enriched in Th, Nb, and Zr also contributed to the rock formation. The magma sources were not affected by subduction-related fluids or melts. The rocks were part of the Jurassic South Anyui ocean basin crust. The blueschists are the crust of the same basin submerged beneath the more southern Anyui-Svyatoi Nos arc to depth of 30-40 km. Pressure and temperature of metamorphism suggest a setting of "warm" subduction. Mineral assemblages of the blueschists record time of a collision of the Anyui-Svyatoi Nos island arc and the New Siberian continental block expressed as a counter-clockwise PT trend. The pressure jump during the collision corresponds to heaping of tectonic covers above the zone of convergence 12 km in total thickness. Ocean rocks were thrust upon the margin of the New Siberian continental block in late Late Jurassic - early Early Cretaceous and mark the NW continuation of the South Anyui suture, one of the main tectonic sutures of the Northeastern Asia.
Resumo:
Late Oligocene to late Pliocene vertical water-mass stratification along depth traverses in the northern Indian Ocean is depicted in this paper by benthic foraminifer index faunas. During most of this time, benthic faunas indicate well-oxygenated, bottom-water conditions at all depths except under the southern Indian upwelling and in the Pliocene in the southern Arabian Sea. Faunas suggest the initiation of lower oxygen conditions at intermediate depths in the northern Indian Ocean beginning in Oligocene Zone P21a. Lower oxygen conditions intensified during primary productivity pulses, possibly related to increased upwelling vigor, in the latest Oligocene and throughout most of the late middle through late Miocene. During times of elevated primary production, there may be more oxygen flux into sedimentary pore waters and the shallow infaunal habitat may become more oxygenated. One criterion for locating the source of "new" water masses is vertical homogeneity of benthic foraminifer indexes for well-oxygenated water masses from intermediate through abyssal depths. In the northern Mascarene Basin, this type of faunal homogeneity with depth corroborates the proposal that the northern Indian Ocean was an area of sinking well-oxygenated waters through most of the Miocene before Zone N17. Oxygenated, possibly "new" intermediate-water masses in the low- to middle-latitude Mascarene and Central Indian basins first developed in the late Oligocene. These well-oxygenated waters were probably more fertile than the Antarctic Intermediate Waters (AAIW) that cover intermediate depths in these areas today. Production of intermediate waters more similar to modern AAIW is indicated by the sparse benthic population of epifaunal rotaloid species in the northern Mascarene Basin during middle Miocene Zone N9 and from early through late Pliocene time. Deep-water characteristics are more difficult to interpret because of the extensive redeposition at the deeper sites. Redeposited intermediate, rather than shallow, water fossils and erosion from north to south in the Mascarene Basin are incompatible with the sluggish circulation from south to north through the western Indian Ocean basins today. Such erosion could result from the vigorous sinking of an intermediate-depth water mass of northern origin. Before late Oligocene Zone P22, benthic faunas indicate a twofold subdivision of the troposphere, with the boundary between upper and lower well-oxygenated water masses located from 2500-3000 mbsl. No characteristic bottom-water fauna developed before the end of late Oligocene Zone P22. Deep and abyssal benthic indexes suggest the development of water masses similar to those of the present day in the latest Miocene. Faunas containing deep-water benthic indexes, including the uvigerinids, suggestive of a water mass similar to modern Indian Deep Water (IDW), appeared during the late Miocene in the northern Mascarene and Central Indian basins. In the early Pliocene, this deep-water fauna was found only in the Central Indian Basin, whereas a fauna typical of modern Antarctic Bottom Water (AABW) spread through deep waters at 2800 mbsl in the Mascarene Basin. By late Pliocene Zone N21, however, deep-water faunas similar to their modern analogs were developed in both the eastern and western basins. Abyssal faunas, studied only in the Mascarene Basin, show more or less similarity to those under modern AABW. Bottom-water faunas containing Nuttallides umbonifera or Epistominella exiguua were first differentiated at the end of Zone P22, then appeared episodically during the early Miocene. These AABW-type faunas reappeared and migrated updepth into deep waters during the glacial episodes at the end of the Miocene and at the beginning of the Pliocene. By late Pliocene Zone N21, however, a bottom-water fauna similar to that under eastern Indian Bottom Water (IBW) developed in the Mascarene Basin. Modern bottom-water characteristics of the Mascarene Basin must have developed after ZoneN21.
Resumo:
Extensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74-207 m water depth. Living (rose Bengal stained) benthic foraminifera included Nonionella basispinata, Epistominella bradyana and Bulimina marginata. Studies on foraminifera at CO2 vents in the Mediterranean and off Papua New Guinea have shown dramatic long-term effects of acidified seawater. We found living calcareous benthic foraminifera in low pH conditions in the northern Gulf of California, although there was an impoverished species assemblage and evidence of post-mortem test dissolution.