295 resultados para Suture zones
em Publishing Network for Geoscientific
Resumo:
Triassic turbidites of the Nanpanjiang basin of south China represent the most expansive and voluminous siliciclastic turbidite accumulation in south China. The Nanpanjiang basin occurs at a critical junction between the southern margin of the south China plate and the Indochina, Siamo and Sibumasu plates to the south and southwest. The Triassic Yangtze carbonate shelf and isolated carbonated platforms in the basin have been extensively studied, but silicilastic turbidites in the basin have received relatively little attention. Deciphering the facies, paleocurrent indicators and provenance of the Triassic turbidites is important for several reasons: it promises to help resolve the timing of plate collisions along suture zones bordering the basin to the south and southwest, it will enable evaluation of which suture zones and Precambrian massifs were source areas, and it will allow an evaluation of the impact of the siliciclastic flux on carbonate platform evolution within the basin. Turbidites in the basin include the Early Triassic Shipao Formation and the Middle-Late Triassic Baifeng, Xinyuan, Lanmu Bianyang and Laishike formations. Each ranges upward of 700 m and the thickest is nearly 3 km. The turbidites contain very-fine sand in the northern part of the basin whereas the central and southern parts of the basin also commonly contain fine and rarely medium sand size. Coarser sand sizes occur where paleocurrents are from the south, and in this area some turbidites exhibit complete bouma sequences with graded A divisions. Successions contain numerous alternations between mud-rich and sand-rich intervals with thickness trends corresponding to proximal/ distal fan components. Spectacularly preserved sedimentary structures enable robust evaluation of turbidite systems and paleocurrent analyses. Analysis of paleocurrent measurements indicates two major directions of sediment fill. The northern part of the basin was sourced primarily by the Jiangnan massif in the northeast, and the central and southern parts of the basin were sourced primarily from suture zones and the Yunkai massif to the south and southeast respectively. Sandstones of the Lower Triassic Shipao Fm. have volcaniclastic composition including embayed quartz and glass shards. Middle Triassic sandstones are moderately mature, matrix-rich, lithic wackes. The average QFL ratio from all point count samples is 54.1/18.1/27.8% and the QmFLt ratio is 37.8/ 18.1/ 44.1%. Lithic fragments are dominantly claystone and siltstone clasts and metasedimentary clasts such as quartz mica tectonite. Volcanic lithics are rare. Most samples fall in the recycled orogen field of QmFLt plots, indicating a relatively quartz and lithic rich composition consistent with derivation from Precambrian massifs such as the Jiangnan, and Yunkai. A few samples from the southwest part of the basin fall into the dissected arc field, indicating a somewhat more lithic and feldspar-rich composition consistent with derivation from a suture zone Analysis of detrial zircon populations from 17 samples collected across the basin indicate: (1) Several samples contain zircons with concordant ages greater than 3000 Ma, (2) there are widespread peaks across the basin at 1800 Ma and 2500, (3) a widespread 900 Ma population, (3) a widespread population of zircons at 440 Ma, and (5) a larger population of younger zircons about 250 Ma in the southwestern part which is replaced to the north and northwest by a somewhat older population around 260-290 Ma. The 900 Ma provenance fits derivation from the Jiangnan Massif, the 2500, 1800, and 440 Ma provenance fits the Yunkai massif, and the 250 Ma is consistent with convergence and arc development in suture zones bordering the basin on the south or southwest. Early siliciclastic turbidite flux, proximal to source areas impacted carbonate platform evolution by infilling the basin, reducing accommodation space, stabilizing carbonate platform margins and promoting margin progradation. Late arrival, in areas far from source areas caused margin aggradation over a starved basin, development of high relief aggradational escarpments and unstable scalloped margins.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
The Jinshajiang suture zone, located in the eastern part of the Tethyan tectonic domain, is noticeable for a large-scale distribution of Late Jurassic to Triassic granitoids. These granitoids were genetically related to the evolution of the Paleo-Tethys Ocean. The Beiwu, Linong and Lunong granitoids occur in the middle zone of the Jinshajiang Suture Zone, and possess similar geochemical features, indicating they share a common magma source. SIMS zircon U-Pb dating reveals the Beiwu, Linong and Lunong granitic intrusions were emplaced at 233.9±1.4 Ma (2 sigma), 233.1 ±1.4 Ma (2 sigma) and 231.0±1.6 Ma (2 sigma), respectively. All of these granitoids are enriched in abundances of Si (SiO2 =65.2-73.5 wt.%), and large-ion-lithophile-elements (LILEs), but depleted in high-field-strength-elements contents (HFSEs, e.g., Nb, Ta, Ti). In addition, they have low P2O5 contents (0.06-0.11 wt.%), A/CNK values ([molecular Al2O3/(CaO+Na2O+K2O)], mostly<1.1) and 10000Ga/Al ratios (1.7-2.2), consistent with the characteristics of I-type granites. In terms of isotopic compositions, these granitoids have high initial 87Sr/86Sr ratios (0.7078-0.7148), Pb isotopic compositions [(206Pb/204Pb)t=18.213-18.598, (207Pb/204Pb)t=15.637-15.730 and (208Pb/204Pb)t=38.323-38.791], zircon d18O values (7. per mil-9.3 per mil) and negative eNd(t) values (-5.1 to -6.7), suggesting they were predominantly derived from the continental crust. Their Nb/Ta ratios (average value=8.6) are consistent with those of the lower continental crust (LCC). However, variable ?Hf(t) values (-8.6 to +2.8) and the occurrences of mafic microgranular enclaves (MMEs) suggest that mantle-derived melts and lower crustal magmas were involved in the generation of these granitoids. Moreover, the high Pb isotopic ratios and elevated zircon d18O values of these rocks indicate a significant contribution of the upper crustal composition. We propose a model in which the Beiwu, Linong and Lunong granitoids were generated under a late collisional or post-collisional setting. It is possible that this collision was completed before Late Triassic. Decompression induced mantle-derived magmas underplated and provided the heat for the anatexis of the crust. Hybrid melts including mantle-derived and the lower crustal magmas were then generated. The hybrid melts thereafter ascended to a shallow depth and resulted in some degree of sedimentary rocks assimilation. Such three-component mixing magmas source and subsequent fractional crystallization could be responsible for the formation of the Beiwu, Linong and Lunong granitoids.
Resumo:
During the "Atlantic Expedition" in1965 (IQSY) a comprehensive bathymetric survey and a few hydrographic stations were made by R.V. "Meteor" in the equatorial region of the Mid-Atlantic Ridge. The survey results are shown in a bythymetric chart covering the western parts of the Romanche- and Chain Fracture Zones. West of the original Romanche Trench another deep trench with a medium depth of 6000 m was discovered. The maximum sounding obtained was 7028 m. Both trenches apparently belong to the same fracture zone, but are distinctly separated from each other. The estern boundary of the trench against the Brasil Basin is formed by a sill rising to a depth of about 4400 m. The serial hydrographic observations give some indications of the flow of the cold Westatlantic deep water in the fracture zone area and its influence on the hydrographic conditions in the East-Atlantic Basin. The upper limit of the nearly homogenious Westatlantic bottom water with an Antarctic components lies about 4400 m. The water mass entering the system of trenches of the Romanche Fracture Zone over the western sill originates from the lower part of the discontinuity layer lying above the bottom water. Potential temperatures of 0.6°C were the lowest observed by "Meteor" in the western trench. There seems to be a remarkable tongue of relatively high salinity and a minimum of oxygen in the deep water of this trench. At present we can only speculate upon the origin of this highly saline deep water tongue underneath the eastward moving relatively thin layer of less saline Westatlantic deep water. In the range of the sill separating both trenches a lee wave is indicated by the distribution of salinity and oxygen, which implies a vertical transport of water masses. Caused by this transport it is assumed that relatively cold water may be lifted temporarily to a depth, where it can pass the northbounding ridge, thus getting directly into the Sierra Leone Basin. In the original Romanche Trench the cold Westatlantic deep water seems to fill the whole trough, but its extension remains limited to the trench itself. The water masses found east of the sill separating the trench from the East-Atlantic Basin originate from the lower part of the discontinuity layer. With potential temperatures of about 1.3°C they are much warmer than those observed in the Romanche Trench bottom water.