126 resultados para Survival at sea
em Publishing Network for Geoscientific
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability
Resumo:
The data show the survival data of Atlantic cod larvae from two different stocks, which were measured in two separate experiments in Kristineberg, Sweden in 2013 on the Western Baltic stock and in Tromsö, Norway in 2014 on the Barents Sea stock. Survival was measured as a response to ocean acidification, control tanks were kept at ambient CO2 concentrations. CO2 concentrations and feeding concentrations are also provided.
Resumo:
Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.