406 resultados para Surveillant assemblage

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three uppermost Cretaceous through basal Paleocene stratigraphic sequences are examined for planktic foraminiferal assemblage stability and temporal succession patterns. These sequences are at mid-latitude South Atlantic DSDP Site 528, then-equatorial Pacific DSDP Site 577 and the Tethyan shelf Ben Gurion section of the Negev, Israel. In order to better estimate biogeographic patterns and habitat preferences, the results of these analyses are compared to previous Cretaceous biogeographic studies and to previous analyses of Cretaceous-Tertiary (K/T) boundary shelf and epicontinental sections. Results indicate that immediately following the K/T boundary, the examined epicontinental and open-ocean sites were exploited primarily by previously epicontinental planktic foraminiferal assemblages. This pattern of K/T boundary assemblage dominance suggests the geologically instantaneous break-down of Late Cretaceous epicontinental and open-ocean biogeographic provincialization. This shift in open-ocean foraminiferal assemblages is not consistent with models of nonselective K/T boundary extinctions, but is consistent with models of extinction resistence and offshore expansion of nearshore taxa. The re-establishment of stable biogeographic differences between open-ocean and epicontinental planktic foraminiferal assemblages occurs by the basal Parvularugoglobigerina eugubina Zone. At open-ocean sites 528 and 577 and the outershelf Ben Gurion section, P0 and P. eugubina Zone faunal records are marked by a pronounced alternation between Paleocene biserial- and non-biserial-dominated assemblages, This alternation appears strongly damped at shelf and epicontinental sections previously examined. The first appearance and peak magnitude of abundant earliest Paleocene trochospiral forms (Parvularugoglobigerina, Eoglobigerina, Morozovella, Globoconusa) also vary from site to site and may depend closely on levels of primary carbonate productivity.