29 resultados para Surface-based analysis

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The large discrepancy between field and laboratory measurements of mineral reaction rates is a long-standing problem in earth sciences, often attributed to factors extrinsic to the mineral itself. Nevertheless, differences in reaction rate are also observed within laboratory measurements, raising the possibility of intrinsic variations as well. Critical insight is available from analysis of the relationship between the reaction rate and its distribution over the mineral surface. This analysis recognizes the fundamental variance of the rate. The resulting anisotropic rate distributions are completely obscured by the common practice of surface area normalization. In a simple experiment using a single crystal and its polycrystalline counterpart, we demonstrate the sensitivity of dissolution rate to grain size, results that undermine the use of "classical" rate constants. Comparison of selected published crystal surface step retreat velocities (Jordan and Rammensee, 1998) as well as large single crystal dissolution data (Busenberg and Plummer, 1986) provide further evidence of this fundamental variability. Our key finding highlights the unsubstantiated use of a single-valued "mean" rate or rate constant as a function of environmental conditions. Reactivity predictions and long-term reservoir stability calculations based on laboratory measurements are thus not directly applicable to natural settings without a probabilistic approach. Such a probabilistic approach must incorporate both the variation of surface energy as a general range (intrinsic variation) as well as constraints to this variation owing to the heterogeneity of complex material (e.g., density of domain borders). We suggest the introduction of surface energy spectra (or the resulting rate spectra) containing information about the probability of existing rate ranges and the critical modes of surface energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Marine microorganisms adapt to their habitat by structural modification of their membrane lipids. This concept is the basis of numerous molecular proxies used for paleoenvironmental reconstruction. Archaeal tetraether lipids from ubiquitous marine planktonic archaea are particularly abundant, well preserved in the sedimentary record and utilized in several molecular proxies. We here introduce the direct, extraction-free analysis of these compounds in intact sediment core sections using laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LDI FTICR-MS can detect the target lipids in single sub-mm sized spots on sediment sections, equivalent to a sample mass in the nanogram range, and could thus pave the way for biomarker-based reconstruction of past environments and ecosystems at subannual to decadal resolution. We demonstrate that ratios of selected archaeal tetraethers acquired by LDI FTICR-MS are highly correlated with values obtained by conventional LC/MS protocols. The ratio of the major archaeal lipids, caldarchaeol and crenarchaeol, analyzed in a 6.2-cm intact section of Mediterranean sapropel S1 at 250-µm resolution (~4-year temporal resolution), provides an unprecedented view of the fine-scale patchiness of sedimentary biomarker distributions and the processes involved in proxy signal formation. Temporal variations of this lipid ratio indicate a strong influence of the 200-yr de Vries solar cycle on reconstructed sea surface temperatures with possible amplitudes of several degrees, and suggest signal amplification by a complex interplay of ecological and hydrological factors. Laser-based biomarker analysis of geological samples has the potential to revolutionize molecular stratigraphic studies of paleoenvironments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A review of interstitial water samples collected from Sites 1003-1007 of the Bahamas Transect along with a shore-based analysis of oxygen and carbon isotopes, minor and trace elements, and sediment chemistry are presented. Results indicate that the pore-fluid profiles in the upper 100 meters below seafloor (mbsf) are marked by shifts between 20 and 40 mbsf that are thought to be caused by changes in sediment reactivity, sedimentation rates, and the influence of strong bottom currents that have been active since the late Pliocene. Pore-fluid profiles in the lower Pliocene-Miocene sequences are dominated by diffusion and do not show significant evidence of subsurface advective flow. Deeper interstitial waters are believed to be the in situ fluids that have evolved through interaction with sediments and diffusion. Pore-fluid chemistry is strongly influenced by carbonate recrystallization processes. Increases in pore-fluid Cl- and Na+ with depth are interpreted to result mainly from carbonate remineralization reactions that are most active near the platform margin. A lateral gradient in detrital clay content observed along the transect, leads to an overall lower carbonate reactivity, and enhances preservation of metastable aragonite further away from the platform margin. Later stage burial diagenesis occurs at slow rates and is limited by the supply of reactive elements through diffusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Palynological, geochemical, and physical records were used to document Holocene paleoceanographic changes in marine sediment core from Dease Strait in the western part of the main axis of the Northwest Passage (core 2005-804-006 PC latitude 68°59.552'N, longitude 106°34.413'W). Quantitative estimates of past sea surface conditions were inferred from the modern analog technique applied to dinoflagellate cyst assemblages. The chronology of core 2005-804-006 PC is based on a combined use of the paleomagnetic secular variation records and the CALS7K.2 time-varying spherical harmonic model of the geomagnetic field. The age-depth model indicates that the core spans the last ~7700 cal years B.P., with a sedimentation rate of 61 cm/ka. The reconstructed sea surface parameters were compared with those from Barrow Strait and Lancaster Sound (cores 2005-804-004 PC and 2004-804-009 PC, respectively), which allowed us to draw a millennial-scale Holocene sea ice history along the main axis of the Northwest Passage (MANWP). Overall, our data are in good agreement with previous studies based on bowhead whale remains. However, dinoflagellate sea surface based reconstructions suggest several new features. The presence of dinoflagellate cysts in the three cores for most of the Holocene indicates that the MANWP was partially ice-free over the last 10,000 years. This suggests that the recent warming observed in the MANWP could be part of the natural climate variability at the millennial time scale, whereas anthropogenic forcing could have accelerated the warming over the past decades. We associate Holocene climate variability in the MANWP with a large-scale atmospheric pattern, such as the Arctic Oscillation, which may have operated since the early Holocene. In addition to a large-scale pattern, more local conditions such as coastal current, tidal effects, or ice cap proximity may have played a role on the regional sea ice cover. These findings highlight the need to further develop regional investigations in the Arctic to provide realistic boundary conditions for climatic simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, not least because they lack or misrepresent physical processes that are specific to high latitudes. The Arctic boundary layer in winter has been observed to be in either a radiatively clear or cloudy state: The radiatively clear state is characterized by strong surface radiative cooling leading to the build-up of surface-based temperature inversions, whereas the cloudy state occurs when cloud liquid water is present in the atmospheric column, allowing little or no surface radiative cooling and leading to weaker and typically elevated temperature inversions. Many large-scale models have been shown to lack the cloudy state, and some do substantially underestimate stability in the clear state. We here present results from the first Lagrangian ARCtic air FORMation experiment (Larcform 1), a GASS (Global atmospheric system studies) single-column model intercomparison which reproduces these biases of large-scale models in an idealised setup.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shipboard analysis of the 1183-m sedimentary section recovered at Site 918 in the Irminger Basin during Ocean Drilling Program Leg 152 revealed material of glacial origin (diamictons, ice-rafted debris (IRD) and dropstones) as deep as 543 m below sea floor (bsf). The sediment containing the deepest dropstone was biostratigraphically dated shipboard as approximately 7 Ma, pushing back the date for the onset of glaciation on southern Greenland by 5 Ma. Thin layers of fine sand were found as much as 60 m deeper in the core, raising the possibility of an even earlier date for glaciation. To determine the sedimentary history of these deeper sand layers, the surface textures on quartz grains from eleven cores bracketing the interval of interest were analyzed by scanning electron microscope. The results suggest that the grains in the 60-m interval below the deepest dropstone have a glacial history. At that level, an 11 -Ma Sr-isotope date was obtained from planktonic foraminifers. This late Miocene timing is supported biostratigraphically by both nannofossil and foraminifer assemblages, indicating a new minimum age for the onset of glaciation on southern Greenland and in the North Atlantic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blue whiting (Micromesistius poutassou, http://www.marinespecies.org/aphia.php?p=taxdetails&id=126439) is a small mesopelagic planktivorous gadoid found throughout the North-East Atlantic. This data contains the results of a model-based analysis of larvae captured by the Continuous Plankton Recorder (CPR) during the period 1951-2005. The observations are analysed using Generalised Additive Models (GAMs) of the the spatial, seasonal and interannual variation in the occurrence of larvae. The best fitting model is chosen using the Aikaike Information Criteria (AIC). The probability of occurrence in the continous plankton recorder is then normalised and converted to a probability distribution function in space (UTM projection Zone 28) and season (day of year). The best fitting model splits the distribution into two separate spawning grounds north and south of a dividing line at 53 N. The probability distribution is therefore normalised in these two regions (ie the space-time integral over each of the two regions is 1). The modelled outputs are on a UTM Zone 28 grid: however, for convenience, the latitude ("lat") and longitude ("lon") of each of these grid points are also included as a variable in the NetCDF file. The assignment of each grid point to either the Northern or Southern component (defined here as north/south of 53 N), is also included as a further variable ("component"). Finally, the day of year ("doy") is stored as the number of days elapsed from and included January 1 (ie doy=1 on January 1) - the year is thereafter divided into 180 grid points.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We calculate net community production (NCP) during summer 2005-2006 and spring 2006 in the Ross Sea using multiple approaches to determine the magnitude and consistency of rates. Water column carbon and nutrient inventories and surface ocean O2/Ar data are compared to satellite-derived primary productivity (PP) estimates and 14C uptake experiments. In spring, NCP was related to stratification proximal to upper ocean fronts. In summer, the most intense C drawdown was in shallow mixed layers affected by ice melt; depth-integrated C drawdown, however, increased with mixing depth. Delta O2/Ar-based methods, relying on gas exchange reconstructions, underestimate NCP due to seasonal variations in surface Delta O2/Ar and NCP rates. Mixed layer Delta O2/Ar requires approximately 60 days to reach steady state, starting from early spring. Additionally, cold temperatures prolong the sensitivity of gas exchange reconstructions to past NCP variability. Complex vertical structure, in addition to the seasonal cycle, affects interpretations of surface-based observations, including those made from satellites. During both spring and summer, substantial fractions of NCP were below the mixed layer. Satellite-derived estimates tended to overestimate PP relative to 14C-based estimates, most severely in locations of stronger upper water column stratification. Biases notwithstanding, NCP-PP comparisons indicated that community respiration was of similar magnitude to NCP. We observed that a substantial portion of NCP remained as suspended particulate matter in the upper water column, demonstrating a lag between production and export. Resolving the dynamic physical processes that structure variance in NCP and its fate will enhance the understanding of the carbon cycling in highly productive Antarctic environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°x1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32 ± 5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. These publicly accessible results will guide future parameterizations of marine ecosystem models exploring the link between phytoplankton community structure and marine biogeochemical cycles.