15 resultados para Surface ionization
em Publishing Network for Geoscientific
Resumo:
We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3 - 4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4 per mil lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, d44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal d44/40Ca and Sr/Ca proxy signals.
Resumo:
Reconstructing terrestrial water budgets is of prime importance for understanding past climate and environment. To shed more light on how plant-wax derived n-alkanes may be used for this purpose we investigated the distribution and stable isotopic compositions of hydrogen (dD) and carbon (d13C) of plant-wax derived n-C29 and -C31 alkanes in terrestrial, coastal and offshore surface sediments in relation to hydrology along a NW-SE transect east of the Italian Apennines from the Po River to the Eastern Gulf of Taranto. The plant wax average chain length increases southward and may relate to increasing temperature and/or aridity. The plant wax dD of the terrestrial and coastal samples also increases southward and mainly reflects changes in the dD of precipitation. The d13C of plant waxes is primarily interpreted in terms of C3 vegetation changes rather than varying contributions by C4 plants. The plant wax d13C-dD composition of the Po River and Apennine rivers differs considerably from that in southern Italy, and suggests a mainly southern source for plant waxes in marine sediments of the Gulf of Taranto. This calibration provides a basis for the reconstruction of past changes in the Italian water balance and n-alkane source areas.
Resumo:
A Porites coral collected from Xisha Island, South China Sea, represents a skeleton secreted in the period from 1906 to 1994. The Sr contents of the coral vary linearly with the instrument-measured sea-surface temperature (SST), giving a Sr thermometer: SST = -1.9658 x Sr + 193.26. The reconstructed SST data show that the late 20th century was warmer (about 1°C) than the early 20th century and that two cooling (1915/1916 and 1947/1948) and three warming (1935/1936, 1960/1961, and 1976/1977) shifts occurred in the century. The temperature shifts are more pronounced for winters, implying a close effect of the west Pacific warm pool and Asian monsoon and suggesting that the former is a primary force controlling the climatic system of the region. Results of this study and previously published data indicate a close link of temperature shifts between the boreal summer and the austral winter or the boreal winter and the austral summer. The annual SST anomalies in the South China Sea and the South Pacific reveal the existence of harmonic but opposite SST variations between the two regions. On the decadal scale the comparative annual SST anomalies for the South China Sea and for the equatorial west Pacific show a similarity in temperature variations, implying that the South China Sea climate is coherent with climatic regime of the tropical west Pacific.
Resumo:
The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30-530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments.
Resumo:
The cold upwelling 'tongue' of the eastern equatorial Pacific is a central energetic feature of the ocean, dominating both the mean state and temporal variability of climate in the tropics and beyond. Recent evidence for the development of the modern cold tongue during the Pliocene-Pleistocene transition has been explained as the result of extratropical cooling that drove a shoaling of the thermocline. We have found that the sub-Antarctic and sub-Arctic regions underwent substantial cooling nearly synchronous to the cold tongue development, thereby providing support for this hypothesis. In addition, we show that sub-Antarctic climate changed in its response to Earth's orbital variations, from a subtropical to a subpolar pattern, as expected if cooling shrank the warm-water sphere of the ocean and thus contracted the subtropical gyres.
Resumo:
We have assessed the reliability of several foraminifer-hosted proxies of the ocean carbonate system (d11B, B/Ca, and U/Ca) using Holocene samples from the Atlantic and Pacific oceans. We examined chemical variability over a range of test sizes for two surface-dwelling foraminifers (Globigerinoides sacculifer and Globigerinoides ruber). Measurements of d11B in G. ruber show no significant relationship with test size in either Atlantic or Pacific sites and appear to provide a robust proxy of surface seawater pH. Likewise there is no significant variability in the d11B of our Atlantic core top G. sacculifer, but we find that d11B increases with increasing test size for G. sacculifer in the Pacific. These systematic differences in d11B are inferred to be a consequence of isotopically light gametogenic calcite in G. sacculifer and its preferential preservation during postdepositional dissolution. The trace element ratio proxies of ocean carbonate equilibria, U/Ca and B/Ca, show systematic increases in both G. ruber and G. sacculifer with increasing test size, possibly as a result of changing growth rates. This behavior complicates their use in paleoceanographic reconstructions. In keeping with several previous studies we find that Mg/Ca ratios increase with increasing size fraction in our well-preserved Atlantic G. sacculifer but not in G. ruber. In contrast to previous interpretations we suggest that these observations reflect a proportionally larger influence of compositionally distinct gametogenic calcite in small individuals compared to larger ones. As with d11B this influences G. sacculifer but not G. ruber, which has negligible gametogenic calcite.
Resumo:
The High Nutrient Low Chlorophyll (HNLC) Southern Ocean plays a key role in regulating the biological pump and the global carbon cycle. Here we examine the efficacy of stable cadmium (Cd) isotope fractionation for detecting differences in biological productivity between regions. Our results show strong meridional Cd isotope and concentration gradients modulated by the Antarctic Fronts, with a clear biogeochemical divide located near 56°S. The coincidence of the Cd isotope divide with the Southern Boundary of the Antarctic Circumpolar Current (ACC),together with evidence for northward advection of the Cd signal in the ACC, demonstrate that Cd isotopes trace surface ocean circulation regimes. The relationships between Cd isotope ratios and concentrations display two negative correlations, separating the ACC and Weddell Gyre into two distinct Cd isoscapes. These arrays are consistent with Rayleigh fractionation and imply a doubling of the isotope effect due to biological consumption of Cd during water transport from the Weddell Gyre into the ACC. The increase in magnitude of Cd isotope fractionation can be accounted for by differences in the phytoplankton biomass, community composition, and their physiological uptake mechanisms in the Weddell Gyre and ACC, thus linking Cd isotope fractionation to primary production and the global carbon cycle.
Resumo:
In the reconstruction of sea surface temperature (SST) from sedimentary archives, secondary sources, lateral transport and selective preservation are considered to be mainly negligible in terms of influencing the primary signal. This is also true for the archaeal glycerol dialkyl glycerol tetraethers (GDGTs) that form the basis for the TEX86 SST proxy. Our samples represent four years variability on a transect off Cape Blanc (NW Africa). We studied the subsurface production, vertical and lateral transport of intact polar lipids and core GDGTs in the water column at high vertical resolution on the basis of suspended particulate matter (SPM) samples from the photic zone, the subsurface oxygen minimum zone (OMZ), nepheloid layers (NL) and the water column between these. Furthermore we compared the water column SPM GDGT composition with that in underlying surface sediments. This is the first study that reports TEX86 values from the precursor intact polar lipids (IPLs) associated with specific head groups (IPL -specific TEX86). We show a clear deviation from the sea surface GDGT composition in the OMZ between 300 and 600 m. Since neither lateral transport nor selective degradation provides a satisfactory explanation for the observed TEX-derived temperature profiles with a bias towards higher temperatures for both core- and IPL -specific TEX86 values, we suggest that subsurface in situ production of archaea with a distinct relationship between lipid biosynthesis and temperature is the responsible mechanism. However, in the NW-African upwelling system the GDGT contribution of the OMZ to the surface sediments does not seem to affect the sedimentary TEX86 as it shows no bias and still reflects the signal of the surface waters between 0 and 60 m.
Resumo:
Abstract of paper will be inserted here...