3 resultados para Supply Chain Simulation, Incomplete Datasets, Variable Cycle Times
em Publishing Network for Geoscientific
Resumo:
Middle Eocene to Late Oligocene sediments from near the crest (Site 689B, water depth 2080 m) and flank (water depth 2914 m) of the Maud Rise (62°S) have been investigated by coarse fraction analysis and have revealed the following: (1) The middle Eocene (50-40 Ma) was a period of pure carbonate sedimentation, with good preservation of carbonate microfossils. No opal > 40 µm is present. (2) In the late Eocene (40-36.5 Ma) opal fossils (mainly radiolaria, and some diatoms > 40 µm) appeared for the first time. Three maxima in opal sedimentation (Eocene/Oligocene boundary, middle early Oligocene and early/late Oligocene boundary) are separated by increases in carbonate sedimentation. The dissolution of carbonate fossils is strong in the opal-rich layers. Opal sedimentation is attributed to cooling and probably more vigorous atmospheric circulation and increased upwelling. (3) Carbonate dissolution increased with water depth in the Oligocene, whereas in the middle Eocene excellent carbonate preservation in the deeper Site 690B and stronger dissolution in the shallower Site 689B is attributed to different bottom-water characteristics. The middle Eocene bottom water probably was formed by strong evaporation at low latitudes, whereas by the earliest Oligocene formation of Antarctic Bottom Water (AABW) had set in. (4) Current influence, not on top but on the flank of the Maud Rise, could be recorded by means of larger grain sizes of benthonic and planktonic microfossils. (5) Ice-rafted debris was not found. Quartz and other minerals are very rare and not larger than 125 µm and may have been supplied by ice as well as by wind or by deep currents. Mica contents were up to 10 times higher in the middle Eocene on the flank compared to on the crest of the Maud Rise, indicating deep current supply.
Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone
Resumo:
The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply >10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.
Resumo:
Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high [SO4]2- reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. d34S values of pyrite are -33 per mil to -50 per mil. Below the sapropels d34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.