31 resultados para Supervisory Control and Data Acquisition (SCADA)

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation recovery from one such natural event and multiple experimental simulations in the sub-Arctic using remote sensing, handheld passive proximal sensors and ground surveys. Normalized difference vegetation index (NDVI) recovered fast (2 years), from the 26% decline following one natural extreme winter warming event. Recovery was associated with declines in dead Empetrum nigrum (dominant dwarf shrub) from ground surveys. However, E. nigrum healthy leaf NDVI was also reduced (16%) following this winter warming event in experimental plots (both control and treatments), suggesting that non-obvious plant damage (i.e., physiological stress) had occurred in addition to the dead E. nigrum shoots that was considered responsible for the regional 26% NDVI decline. Plot and leaf level NDVI provided useful additional information that could not be obtained from vegetation surveys and regional remote sensing (MODIS) alone. The major damage of an extreme winter warming event appears to be relatively transitory. However, potential knock-on effects on higher trophic levels (e.g., rodents, reindeer, and bear) could be unpredictable and large. Repeated warming events year after year, which can be expected under winter climate warming, could result in damage that may take much longer to recover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will improve the predictability of the climate change impacts on ecosystem functioning. For this purpose, trait assessment is a promising method compared to the traditional taxonomic approach, but it has not been applied earlier. In this study the response of a sub-arctic soil Collembola community to long-term (16 years) climate manipulation by open top chambers was assessed. The drought-susceptible Collembola community responded strongly to the climate manipulation, which substantially reduced soil moisture and slightly increased soil temperature. The total density of Collembola decreased by 51% and the average number of species was reduced from 14 to 12. Although community assessment showed species-specific responses, taxonomically based community indices, species diversity and evenness, were not affected. However, morphological and ecological trait assessments were more sensitive in revealing community responses. Drought-tolerant, larger-sized, epiedaphic species survived better under the climate manipulation than their counterparts, the meso-hydrophilic, smaller-sized and euedaphic species. Moreover it also explained the significant responses shown by four taxa. This study shows that trait analysis can both reveal responses in a soil fauna community to climate change and improve the understanding of the mechanisms behind them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future oceans are predicted to contain less oxygen than at present. This is because oxygen is less soluble in warmer water and predicted stratification will reduce mixing. Hypoxia in marine environments is thus likely to become more widespread in marine environments and understanding species-responses is important to predicting future impacts on biodiversity. This study used a tractable model, the Antarctic clam, Laternula elliptica, which can live for 36 years, and has a well-characterized ecology and physiology to understand responses to hypoxia and how the effect varied with age. Younger animals had a higher condition index, higher adenylate energy charge and transcriptional profiling indicated that they were physically active in their response to hypoxia, whereas older animals were more sedentary, with higher levels of oxidative damage and apoptosis in the gills. These effects could be attributed, in part, to age-related tissue scaling; older animals had proportionally less contractile muscle mass and smaller gills and foot compared with younger animals, with consequential effects on the whole-animal physiological response. The data here emphasize the importance of including age effects, as large mature individuals appear to be less able to resist hypoxic conditions and this is the size range that is the major contributor to future generations. Thus, the increased prevalence of hypoxia in future oceans may have marked effects on benthic organisms' abilities to persist and this is especially so for long-lived species when predicting responses to environmental perturbation.