2 resultados para Suite-B

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We here present a compilation of planktic and benthic 14C reservoir ages for the Last Glacial Maximum (LGM) and early deglacial from 11 key sites of global ocean circulation in the Atlantic and Indo-Pacific Ocean. The ages were obtained by 14C plateau tuning, a robust technique to derive both an absolute chronology for marine sediment records and a high-resolution record of changing reservoir/ventilation ages (Delta14C values) for surface and deep waters by comparing the suite of planktic 14C plateaus of a sediment record with that of the atmospheric 14C record (Sarnthein et al., 2007, doi:10.1029/173GM13). Results published thus far used as atmospheric 14C reference U/Th-dated corals, the Cariaco planktic record, and speleothems (Fairbanks et al., 2005, doi:10.1016/j.quascirev.2005.04.007; Hughen et al., 2006, doi:10.1016/j.quascirev.2006.03.014; Beck et al., 2001, doi:10.1023/A:1008175728826). We have now used the varve-counted atmospheric 14C record of Lake Suigetsu terrestrial macrofossils (Ramsey et al., 2012, doi:10.1126/science.1226660) to recalibrate the boundary ages and reservoir ages of the seven published records directly to an atmospheric 14C record. In addition, the results for four new cores and further planktic results for four published records are given. Main conclusions from the new compilation are: (1) The Suigetsu atmospheric 14C record on its varve counted time scale reflects all 14C plateaus, their internal structures and relative length previously identified, but implies a rise in the average 14C plateau age by 200-700 14C yr during LGM and early deglacial times. (2) Based on different 14C ages of coeval atmospheric and planktic 14C plateaus, marine surface water Delta14C may have temporarily dropped to an equivalent of ~0 yr in low-latitude lagoon waters, but reached >2500 14C yr both in stratified subpolar waters and in upwelled waters such as in the South China Sea. These values differ significantly from a widely assumed constant global planktic Delta14C value of 400 yr. (3) Suites of deglacial planktic Delta14C values are closely reproducible in 14C records measured at neighboring core sites. (4) Apparent deep-water 14C ventilation ages (equivalents of benthic Delta14C), deduced from the sum of planktic Delta14C and coeval benthic-planktic 14C differences, vary from 500 up to >5000 yr in LGM and deglacial ocean basins.