2 resultados para Structural transition

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotopic depth stratification and relative abundance studies of planktic foraminifera at ODP Site 738 reveal three major faunal turnovers during the latest Paleocene and early Eocene, reflecting the climatic and structural changes in the Antarctic surface ocean. Faunal Event 1 occurred near the Paleocene/Eocene boundary and is characterized by a faunal turnover in deep dwellers, decreased relative abundance in intermediate dwellers and increased relative abundance in surface dwellers. This event marks a temporary elimination of the vertical structure in the surface ocean over a period of more than 63,000 years that is apparently associated with the sudden shutdown of the "Antarctic Intermediate Water" production. The appearance of morozovellids before this event suggests that polar warming is the cause for the shutdown in the production of this water mass. At this time warm saline deep water may have formed at low latitudes. Faunal Event 2 occurred near the AP5a/AP5b Subzonal boundary and is characterized by a faunal turnover in deep dwellers with no apparent change in surface and intermediate dwellers. Increased individual size, wall-thickness and relative abundance in deep dwelling chiloguembelinids suggests the formation of a deep oxygen minima in the Antarctic Oceans during the maximum polar warming possibly as a result of upwelling of nutrient-rich deep water. Faunal Event 3 occurred in Subzone AP6 and is characterized by a faunal turnover in surface dwellers and a delayed diversification in deep dwellers. This event marks the onset of Antarctic cooling. A drastic decrease in the delta13C/delta18O values of the deep assemblage in Zone AP7 suggests an intensified thermocline and reduced upwelling following the polar cooling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous structural features occur in the Leg 128 cores from the Japan Sea. They include (1) gravity-induced structures such as slump folds, (2) dewatering structures comprising several sets of veins, and (3) larger faults and veins developed in the volcanic basement of the Yamato Basin as well as in the sedimentary rocks of the Oki Ridge and Kita-Yamato Trough. Gravity-induced structures, mainly slumps and associated faults, suggest the existence of paleoslopes and the dominance of gravitational tectonics during the early and middle Miocene, at the Pliocene/Pleistocene boundary, and during the Quaternary. Several types of mud-filled veins having various shapes were observed. These are especially abundant in the middle Miocene siliceous claystones and porcellanites from the Kita-Yamato Trough. They have been interpreted as dewatering conduits that formed preferentially in highly porous, water-saturated diatomaceous muds on a slope, because of episodic loss of sediment strength, collapse of the sediment framework, and consequent fluid migration. The central part of the vein serves once as a fluid conduit, whereas the transition between conduit-controlled and intergranular flow occurs at the branching extremities, with concentration of fines. The likely trigger responsible for the strength loss is seismic activity. Development of these veins, spatially and chronologically linked to small normal microfaults, implies an extensional regime having layer-parallel extension and a local bedding-parallel shear couple, probably the result of gravitational gliding. The brittle fractures found in Yamato Basin basement Hole 794D cores comprise joints, faults, and veins filled with chlorite-saponite, saponite, and calcite. They suggest a likely transpressive to transtensional regime around the early Miocene/ middle Miocene boundary, with a north-northeast-south-southwest compression alternating with a west-northwest-eastsoutheast extension. The faults from Site 799 cores on the Yamato Rise exhibit a prominent early Miocene-middle Miocene extensional environment, a late Miocene-early Pliocene phase of normal and strike-slip faulting, and a final phase that began during the latest Pliocene. Site 798, on the Oki Ridge, reveals faults that recorded a consistent extensional tectonic regime from Pliocene to the Holocene. These data support the pull-apart kinematic model for early Miocene-middle Miocene time, as regarding the stress regime deduced from the Yamato Basin basement fractures. The recent compression known in the eastern margin of the Japan Sea was not documented by compressive structures at any site. The late Miocene-early Pliocene faulting phase corresponds to a major and general reorganization of the stress distribution in the arc area. Evidence for rapid and main subsidence and synsedimentary extension of the Yamato Basin and Yamato Rise areas between 20 and 15 Ma, and the concomitant rotation of southwest Japan, raise the question of links between this opening and the Shimanto Belt collision in southwest Japan, between the arc and the Philippine Sea Plate.