18 resultados para Striped bass

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification, caused by rising concentrations of carbon dioxide (CO2), is widely considered to be a major global threat to marine ecosystems. To investigate the potential effects of ocean acidification on the early life stages of a commercially important fish species, European sea bass (Dicentrarchus labrax), 12 000 larvae were incubated from hatch through metamorphosis under a matrix of two temperatures (17 and 19 °C) and two seawater pCO2 levels (ambient and 1,000 µatm) and sampled regularly for 42 days. Calculated daily mortality was significantly affected by both temperature and pCO2, with both increased temperature and elevated pCO2 associated with lower daily mortality and a significant interaction between these two factors. There was no significant pCO2 effect noted on larval morphology during this period but larvae raised at 19 °C possessed significantly larger eyes and lower carbon:nitrogen ratios at the end of the study compared to those raised under 17 °C. Similarly, when the incubation was continued to post-metamorphic (juvenile) animals (day 67-69), fish raised under a combination of 19 °C and 1000 µatm pCO2 were significantly heavier. However, juvenile D. labrax raised under this combination of 19 °C and 1000 µatm pCO2 also exhibited lower aerobic scopes than those incubated at 19 °C and ambient pCO2. Most studies investigating the effects of near-future oceanic conditions on the early life stages of marine fish have used incubations of relatively short durations and suggested that these animals are resilient to ocean acidification. Whilst the increased survival and growth observed in this study supports this view, we conclude that more work is required to investigate whether the differences in juvenile physiology observed in this study manifest as negative impacts in adult fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coccoliths, calcite plates produced by the marine phytoplankton coccolithophores, have previously shown a large array of carbon and oxygen stable isotope fractionations (termed "vital effects"), correlated to cell size and hypothesized to reflect the varying importance of active carbon acquisition strategies. Culture studies show a reduced range of vital effects between large and small coccolithophores under high CO2, consistent with previous observations of a smaller range of interspecific vital effects in Paleocene coccoliths. We present new fossil data examining coccolithophore vital effects over three key Cenozoic intervals reflecting changing climate and atmospheric partial pressure of CO2 (pCO2). Oxygen and carbon stable isotopes of size-separated coccolith fractions dominated by different species from well preserved Paleocene-Eocene thermal maximum (PETM, ~56 Ma) samples show reduced interspecific differences within the greenhouse boundary conditions of the PETM. Conversely, isotope data from the Plio-Pleistocene transition (PPT; 3.5-2 Ma) and the last glacial maximum (LGM; ~22 ka) show persistent vital effects of ~2 per mil. PPT and LGM data show a clear positive trend between coccolith (cell) size and isotopic enrichment in coccolith carbonate, as seen in laboratory cultures. On geological timescales, the degree of expression of vital effects in coccoliths appears to be insensitive topCO2 changes over the range ~350 ppm (Pliocene) to ~180 ppm (LGM). The modern array of coccolith vital effects arose after the PETM but before the late Pliocene and may reflect the operation of more diverse carbon acquisition strategies in coccolithophores in response to decreasing Cenozoic pCO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid-state-physics technique of electron spin resonance (ESR) has been employed in an exploratory study of marine limestones and impact-related deposits from Cretaceous-Tertiary (KT) boundary sites including Spain (Sopelana and Caravaca), New Jersey (Bass River), the U.S. Atlantic continental margin (Blake Nose, ODP Leg 171B/1049/A), and several locations in Belize and southern Mexico within -600 km of the Chicxulub crater. The ESR spectra of SO3(1-) (a radiation-induced point defect involving a sulfite ion substitutional for CO3(2-) which has trapped a positive charge) and Mn(2+) in calcite were singled out for analysis because they are unambiguously interpretable and relatively easy to record. ESR signal strengths of calcite-related SO3(1-) and Mn(2+) have been studied as functions of stratigraphic position in whole-rock samples across the KT boundary at Sopelana, Caravaca, and Blake Nose. At all three of these sites, anomalies in SO3(1-) and/or Mn(2+) intensities are noted at the KT boundary relative to the corresponding background levels in the rocks above and below. At Caravaca, the SO3(1-) background itself is found to be lower by a factor of 2.7 in the first 30,000 years of the Tertiary relative to its steady-state value in the last 15,000 years of the Cretaceous, indicating either an abrupt and quasi-permanent change in ocean chemistry (or temperature) or extinction of the marine biota primarily responsible for fixing sulfite in the late Cretaceous limestones. An exponential decrease in the Mn(2+) concentration per unit mass calcite, [Mn(2+)], as the KT boundary at Caravaca is approached from below (1/e characteristic length =1.4 cm) is interpreted as a result of post-impact leaching of the seafloor. Absolute ESR quantitative analyses of proximal impact deposits from Belize and southern Mexico group naturally into three distinct fields in a twodimensional [SO3(1-)]-versus-[Mn(2+)] scatter plot. These fields contain (I) limestone ejecta clasts, (II) accretionary lapilli, and (III) a variety of SO3(1-) -depleted/Mn(2+) enriched impact deposits. Data for the investigated non-impact-related Cretaceous and Tertiary marine limestones (Spain and Blake Nose) fall outside of these three fields. With reference to thes enon-impact deposits, fields I, II, and III can be respectively characterized as Mn(2+) -depleted, SO3(1-) -enhanced, and SO3(1-) -depleted. It is proposed that (1) field I represents calcites from the Yucatin Platform, and that the Mn(2+) -depleted signature can be used as an indicator of primary Chicxulub ejecta in deep marine environments and (2) field II represents calcites that include a component formed in the vapor plume, either from condensation in the presence of CO2/SO3(1-) -rich vapors, or reactions between CaO and CO2/SO3 rich vapors, and that this SO3(1-) -enhanced signature can be used as an indicator of impact vapor plume deposits. Given these two propositions, the ESR data for the Blake Nose deposits are ascribed to the presence of basal coarse calcitic Chicxulub ejecta clasts, while the finer components that are increasingly represented toward the top are interpreted to contain high- SO3(1-) calcite from the vapor plume. The apparently-undisturbed Bass River deposit may contain even higher concentrations of vapor-plume calcite. None of the three components included in field III appear to be represented at distal, deep marine KT-boundary sites; this field may include several types of impact-related deposits of diverse origins and diagenetic histories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About 200 volcanic ash layers were recovered during DSDP Leg 57. The volcanic glass in some of these layers was investigated petrographically and chemically in this study. Volcanic glass is mainly rhyolitic and/or rhyodacitic in chemical composition, and its refractive index ranges from 1.496 to 1.529. Some volcanic ash layers consist of multiple grains of different chemical compositions. All the volcanic glass belongs to the tholeiitic and the calc-alkalic volcanic rock series, in SiO2-(Na2O + K2O) diagram and FeO*/MgO-SiO2 diagram. We correlated successfully three volcanic ash layers from the standpoint of chemical composition and biostratigraphy. Hydration of volcanic glass from Leg 57 is less intense than in other DSDP cores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the New Jersey Coastal Plain, a silty to clayey sedimentary unit (the Marlboro Formation) represents deposition during the Paleocene-Eocene thermal maximum (PETM). This interval is remarkably different from the glauconitic sands and silts of the underlying Paleocene Vincentown and overlying Eocene Manasquan Formation. We integrate new and published stable isotope, biostratigraphic, lithostratigraphic and ecostratigraphic records, constructing a detailed time frame for the PETM along a depth gradient at core sites Clayton, Wilson Lake, Ancora and Bass River (updip to downdip). The onset of the PETM, marked by the base of the carbon isotope excursion (CIE), is within the gradual transition from glauconitic silty sands to silty clay, and represented fully at the updip sites (Wilson Lake and Clayton). The CIE "core" interval is expanded at the updip sites, but truncated. The CIE "core" is complete at the Bass River and Ancora sites, where the early part of the recovery is present (most complete at Ancora). The extent to which the PETM is expressed in the sediments is highly variable between sites, with a significant unconformity at the base of the overlying lower Eocene sediments. Our regional correlation framework provides an improved age model, allowing better understanding of the progression of environmental changes during the PETM. High-resolution benthic foraminiferal data document the change from a sediment-starved shelf setting to a tropical, river-dominated mud-belt system during the PETM, probably due to intensification of the hydrologic cycle. The excellent preservation of foraminifera during the PETM and the lack of severe benthic extinction suggest there was no extreme ocean acidification in shelf settings.