14 resultados para Stratospheric circulation
em Publishing Network for Geoscientific
Resumo:
Amounts of aerosols transported to the shelf surface were calculated on the basis of in situ measurements of concentrations of eolian matter (insoluble aerosol fraction) and vertical fluxes of settling dust in five areas of the Black Sea shelf from the Danube delta to the Inguri River mouth. More than 8.3 mln t of eolian matter are annually transported from the land over the shelf of the former USSR. At the same time more than 5.4 mln t are supplied to the northwestern shelf area, 1.7 mln t are supplied to the Crimean area, about 0.8 mln t are supplied to the Kerch-Taman' area, and about 0.45 mln t are supplied to the Caucasian area.
Resumo:
Present-day low-latitude eastern and western Atlantic basins are geochemically distinct below the sill depth of the Mid-Atlantic Ridge. While Antarctic Bottom Water (AABW) circulates freely in the western Atlantic, flow into the eastern Atlantic is restricted below 4 km which results in filling the abyssal depths of this basin with water of geochemical similarity to nutrient depleted North Atlantic Deep Water. Using carbon isotopes and Cd/Ca ratios in benthic foraminifera we reconstruct the geochemistry of these basins during the last glacial maximum. Results indicate that deep eastern and western Atlantic basins became geochemically identical during the last glacial. This was achieved by shoaling of the upper surface of AABW above the sill depth of the Mid-Atlantic Ridge, which allowed bottom waters in both basins to be filled with the same water mass. Although AABW became the dominant water mass in the deep eastern Atlantic basin during the glacial, Holocene-glacial delta13C-PO4 shifts in this basin are in Redfield proportions, unlike the disproportionate Holocene-glacial delta13C-PO4 shifts observed in the Southern Ocean. By examining the composition of deep and intermediate waters throughout the Atlantic, we show that this effect was induced by a change in gradient of the delta13C-PO4 deepwater mixing line during glacial times. Evidence from high-latitude planktonic data suggests that the change in gradient of the deepwater mixing line was brought about through a significant reduction in the thermodynamic effect on Southern Ocean surface waters. By using coupled delta13C-PO4 data to constrain the composition of end member water masses in the glacial Atlantic, we conclude that deep waters in the low-latitude glacial Atlantic were composed of a mixture of northern and southern source waters in a ratio of 1:3.
Resumo:
The carbonate cements found in Sites 717-719 of ODP Leg 116 correspond to the precipitation of inorganic calcite due to circulation of hot fluid associated with intraplate deformation in the central Indian Ocean. A first burst of hydrothermal activity may have occurred 7.5-9 Ma and a second burst less than 0.5 Ma. These fluids were probably derived from the basaltic basement and the immediately overlying sediments.
Resumo:
The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.
Resumo:
Fifteen Iberian margin sediment cores, distributed between 43°12'N and 35°53'N, have been used to reconstruct spatial and temporal (sub)surface circulation along the Iberian margin since the Last Glacial period. Time-slice maps of planktonic foraminiferal derived summer sea surface temperature (SST) and export productivity (Pexp) were established for specific time intervals within the last 35 ky: the Holocene (Recent and last 8 ky), Younger Dryas (YD), Heinrich Stadials (HS) 1, 2a, 2b, 3, and the Last Glacial Maximum (LGM). The SST during the Holocene shows the same latitudinal gradient along the western Iberian margin as present-day with cold but productive areas that reflect the influence of coastal upwelling centers. The LGM appears as a slightly less warm, but more productive period relative to the Holocene and present-day conditions, suggesting that sea-level minima forced a westward displacement of the coastal upwelling centers possibly accompanied by a strengthening of northward winds. During the YD, a longitudinal thermal front is depicted at 10°W, with cold polar waters offshore and warmer subtropical waters inshore, suggesting that the subtropical Paleo-Iberian Poleward Current more likely flowed at a more inshore location masking the local SST signal and amplitude of variation. A substantial cooling and drop in productivity is observed during all HS, in particular HS1 and HS3, reflecting the penetration of icebergs-derived meltwater. These most extreme southward extensions of very cold waters define a strong SST gradient that marks a possible Paleo-Azores Front. Higher production south of this front was likely fed by frontal nutrient advection.
Resumo:
Distribution patterns of the most important pollen types from southern European and northwest African source areas for the 18,000 years B.P. time slice are reconstructed from pollen records of 14 well-dated deep-sea cores located between 37° and 9°N and compared with the modern pollen distribution in this area. It is concluded that the belt with maximum African Easterly Jet transport did not shift latitudinally during the last glacial-interglacial transition but remained at about 20°N. Furthermore, it is substantiated that the trade winds did not shift latitudinally during the last glacial-interglacial transition. This evidence is not compatible with an atmospheric circulation model that assumes a zone of surface westerlies in the northern part of northwest Africa. Trade winds during glacial episodes did, however, intensify, especially from about 36° to 24° N.
Resumo:
The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.
Resumo:
A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m?3 yr1 extrapolated to an annual rate and 7.7 mmol C m?3 yr?1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.
Resumo:
Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
Resumo:
Crystal size measurements have been carried out on tephra fall layers of Miocene to recent age from Sites 998, 999, and 1000 in the western Caribbean Sea. Maximum crystal size is used as a proxy for the grain size characteristics of the layers and an index of atmospheric dispersal from source eruptions. Crystal sizes range from 50 to 650 µm with the majority falling between 200 and 300 µm. All three sites exhibit a coarsening in the grain size of tephra layers with increasing age to the early Miocene that broadly correlates with an increase in the frequency of layers. Analysis of the present lower and upper level atmospheric circulation in the western Caribbean suggests that the layers were derived from source eruptions to the west of the sites somewhere in the Central American region. Minimum distances to these sources are of the order of 700 km. Crystal sizes in tephra layers at these distances are consistent with their derivation from energetic pyroclastic flow-forming eruptions that injected tephra to stratospheric levels by large-scale co-ignimbrite and plinian-style plumes. Coarsening of the layers during the Miocene peak of explosive volcanism cannot be attributed to any major change in paleowind intensity and is taken to represent the occurrence of more energetic eruptions that were able to disperse tephra over larger areas.
Resumo:
Lead (Pb), neodymium (Nd), and strontium (Sr) isotopic analyses were carried out on sediment leachates (reflecting the isotope composition of past seawater) and digests of the bulk residues (reflecting detrital continental inputs) of Integrated Ocean Drilling Program (IODP) Leg 302 and core PS2185 from the Lomonosov Ridge (Arctic Ocean). Our records are interpreted to reflect changes in continental erosion and oceanic circulation, driven predominantly by tectonic forcing on million-year timescales in the older (pre-2 Ma) part of the record and by climatic forcing of weathering and erosion of the Eurasian continental margin on thousand-year timescales in the younger (post-2 Ma) part. These data, covering the past ~15 Ma, show that continental inputs to the central Arctic Ocean have been more closely linked to glacial and hydrological processes occurring on the Eurasian margin than on continental North America and Greenland. The constancy of the detrital input signatures supports the early existence of an Arctic sea ice cover, whereas the major initiation of Northern Hemisphere glaciation at 2.7 Ma appears to have had little impact on the weathering regime of the Eurasian continental margin.
Resumo:
Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.
Resumo:
We reconstruct the geometry and strength of the Atlantic Meridional Overturning Circulation during Heinrich Stadial 2 and three Greenland interstadials of the 20-50 ka period based on the comparison of new and published sedimentary 231Pa/230Th data with simulated sedimentary 231Pa/230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present day North Atlantic Deep Water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin, and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic Bottom Water (AABW). Our results further show that during Heinrich Stadial 2, the deep Atlantic was probably directly affected by a southern-sourced water mass below 2500 m depth, while a slow southward flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.