183 resultados para Stick-slip
em Publishing Network for Geoscientific
Resumo:
We report on newly discovered mud volcanoes located at about 4500 m water depth 90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, Delta18O, DeltaD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.
Resumo:
Slowslip forms part of the spectrum of fault behaviour between stable creep and destructive earthquakes. Slow slip occurs near the boundaries of large earthquake rupture zones and may sometimes trigger fast earthquakes. It is thought to occur in faults comprised of rocks that strengthen under fast slip rates, preventing rupture as a normal earthquake, or on faults that have elevated pore-fluid pressures. However, the processes that control slow rupture and the relationship between slow and normal earthquakes are enigmatic. Here we use laboratory experiments to simulate faulting in natural rock samples taken from shallow parts of the Nankai subduction zone, Japan, where very low-frequency earthquakes - a form of slow slip - have been observed.We find that the fault rocks exhibit decreasing strength over millimetre-scale slip distances rather than weakening due to increasing velocity. However, the sizes of the slip nucleation patches in our laboratory simulations are similar to those expected for the very lowfrequency earthquakes observed in Nankai. We therefore suggest that this type of fault-weakening behaviour may generate slow earthquakes. Owing to the similarity between the expected behaviour of slow earthquakes based on our data, and that of normal earthquakes during nucleation, we suggest that some types of slow slip may represent prematurely arrested earthquakes.
Resumo:
The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.
Resumo:
Detrital modes for 524 deep-marine sand and sandstone samples recovered on circum-Pacific, Caribbean, and Mediterranean legs of the Deep Sea Drilling Project and the Ocean Drilling Program form the basis for an actualistic model for arc-related provenance. This model refines the Dickinson and Suczek (1979) and Dickinson and others (1983) models and can be used to interpret the provenance/tectonic history of ancient arc-related sedimentary sequences. Four provenance groups are defined using QFL, QmKP, LmLvLs, and LvfLvmiLvl ternary plots of site means: (1) intraoceanic arc and remnant arc, (2) continental arc, (3) triple junction, and (4) strike-slip-continental arc. Intraoceanic- and remnant-arc sands are poor in quartz (mean QFL%Q < 5) and rich in lithics (QFL%L > 75); they are predominantly composed of plagioclase feldspar and volcanic lithic fragments. Continental-arc sand can be more quartzofeldspathic than the intraoceanic- and remnant-arc sand (mean QFL%Q values as much as 10, mean QFL%F values as much as 65, and mean QmKP%Qm as much as 20) and has more variable lithic populations, with minor metamorphic and sedimentary components. The triple-junction and strike-slip-continental groups compositionally overlap; both are more quartzofeldspathic than the other groups and show highly variable lithic proportions, but the strike-slip-continental group is more quartzose. Modal compositions of the triple junction group roughly correlate with the QFL transitional-arc field of Dickinson and others (1983), whereas the strike-slip-continental group approximately correlates with their dissected-arc field.
Resumo:
Deformation features within the cores are studied with a view towards elucidating the structure of the Middle America Trench along the transect drilled during Leg 67. Where possible, inferences are made as to the physical environment of deformation. Extensional tectonics prevails in the area of the seaward slope and trench. Fracturing and one well-preserved normal fault are found mostly within the lower Miocene chalks, at the base of the sedimentary section. These chalks have high porosities (40%-60%) and water content (30%-190%, based on % dry wt.). Experimental triaxial compression tests conducted on both dry and water-saturated samples of chalk from Holes 495 and 499B show that only in the saturated samples is more brittle behavior observed. Brittle failure of the chalks is greatly facilitated by pore fluid pressures that lead to low effective pressures. Additional embrittlement (weakening) can take place as a result of the imposed extensional stress resulting from bending of a subducting elastic oceanic plate. The chalks exhibit, in a landward direction, an increase in density and mechanical strength and a decrease in water content. These changes are attributed to mechanical compaction that may have resulted from tectonic horizontal compression. The structure of the landward slope is not well understood because the slope sites had to be abandoned due to the presence of gas hydrate. The relationship of the chaotic, brittle deformation (observed in the cores from Hole 494A) at the base of the landward slope to tectonic processes remains unclear. The deformation observed on the slope sites (Holes 496 and 497) is mostly fracturing and near-vertical sigmoidal veinlets. These are interpreted as being the result of gas/fluid overpressurization due to the decomposition of the gas hydrate, and not due to tectonic loading of accreted sediments. Aside from four small displacement (less than 1cm) reverse faults observed in the lower Miocene chalks (which may be the product of soft-sediment deformation), there is a noticeable absence of structures reflecting a dominance of horizontal (tectonic) compression along the transect drilled. The absence of such features, the lack of continuity of sediment types across the trench-landward slope, and the normal stratigraphic sequence in Hole 494A do not support any known accretionary model.
Resumo:
Basal melt of ice shelves may lead to an accumulation of disc-shaped ice platelets underneath nearby sea ice, to form a sub-ice platelet layer. Here we present the seasonal cycle of sea ice attached to the Ekström Ice Shelf, Antarctica, and the underlying platelet layer in 2012. Ice platelets emerged from the cavity and interacted with the fast-ice cover of Atka Bay as early as June. Episodic accumulations throughout winter and spring led to an average platelet-layer thickness of 4 m by December 2012, with local maxima of up to 10 m. The additional buoyancy partly prevented surface flooding and snow-ice formation, despite a thick snow cover. Subsequent thinning of the platelet layer from December onwards was associated with an inflow of warm surface water. The combination of model studies with observed fast-ice thickness revealed an average ice-volume fraction in the platelet layer of 0.25 +/- 0.1. We found that nearly half of the combined solid sea-ice and ice-platelet volume in this area is generated by heat transfer to the ocean rather than to the atmosphere. The total ice-platelet volume underlying Atka Bay fast ice was equivalent to more than one-fifth of the annual basal melt volume under the Ekström Ice Shelf.