3 resultados para Statistical tests

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the 2004-2006 growing seasons, we trapped a total of 6980 spiders (5066 adults, 1914 immatures) using pitfall traps at the Arctic Long Term Experimental Research (LTER) site in Toolik Lake, Alaska. We found 10 families and 51 putative species, with 45 completely identified, in two distinct habitats: Moist Acidic Tundra (MAT) and Dry Heath (DH) Tundra. We captured spiders belonging to the following families (number of species captured): Araneidae (1), Clubionidae (1), Dictynidae (1), Gnaphosidae (4), Linyphiidae (26), Lycosidae (11), Philodromidae (2), Salticidae (1), Theridiidae (1), and Thomisidae (3). Statistical comparisons of families captured at MAT and DH Tundra indicate that the habitats have significantly different spider communities (Chi Square Test: p < 0.0001, and Fisher's Exact Test: p = 0.0018). This finding is further supported by differences in similarity, diversity, evenness, and species richness between the two habitats. In this report, we present eight new state records and five extensions of previously described ranges for spider species. The following species are new state records for Alaska: Emblyna borealis (O.P.-Cambridge 1877), Horcotes strandi (Sytschevskaja 1935), Mecynargus monticola (Holm 1943), Mecynargus tungusicus (Eskov 1981), Metopobactrus prominulus (O.P. -Cambridge 1872), Poeciloneta theridiformis Emerton 1911, and Poeciloneta vakkhanka (Tanasevitch 1989). The following five species have been reported previously in Alaska, but not near Toolik Lake: Hypsosinga groenlandica Simon 1889, Gnaphosa borea Kulczyn'ski 1908, Gnaphosa microps Holm 1939, Haplodrassus hiemalis (Emerton 1909), and Islandiana cristata Eskov 1987. Pairwise similarity indices were calculated across 13 other arctic and subarctic spider communities and statistical tests show that all sites are dissimilar (p = 0.25). These results fit the general pattern of both the patchiness and habitat specificity of arctic spider fauna.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new dataset of meltwater river discharge for the vicinity of Kangerlussuaq, Southwest Greenland. The dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson) River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2010. Additional data of water temperature, air pressure, and lake water depth and temperature are also provided. Discharge data were measured at sites with near-ideal properties for such data collection. Regardless, high water bedload and turbulent flow introduce considerable uncertainty. These were constrained and quantified using statistical techniques, thereby providing a high quality dataset from this important site. The greatest data uncertainties are associated with streambed elevation change and measurements. Large portions of stream channels deepened according to statistical tests, but poor precision of streambed depth measurements also added uncertainty. Quality checked data are freely available for scientific use as supplementary online material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser ablation inductively coupled plasma-mass spectrometry microanalysis of fossil and live Globigerinoides ruber from the eastern Indian Ocean reveals large variations of Mg/Ca composition both within and between individual tests from core top or plankton pump samples. Although the extent of intertest and intratest compositional variability exceeds that attributable to calcification temperature, the pooled mean Mg/Ca molar values obtained for core top samples between the equator and >30°S form a strong exponential correlation with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp**0.076SST°C, r**2 = 0.99). The intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5°C and are notable for correlating with the seasonal range in seawater temperature at different sites.