3 resultados para Statistical physics and nonlinear systems

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soupy and mousse-like fabrics are disturbance sedimentary features that result from the dissociation of gas hydrate, a process that releases water. During the core retrieval process, soupy and mousse-like fabrics are produced in the gas hydrate-bearing sediments due to changes in pressure and temperature conditions. Therefore, the identification of soupy and mousse-like fabrics can be used as a proxy for the presence of gas hydrate in addition to other evidence, such as pore water freshening or anomalously cool temperature. We present here grain-size results, mineralogical composition and magnetic susceptibility data of soupy and mousse-like samples from the southern Hydrate Ridge (Cascadia accretionary complex) acquired during Leg 204 of the Ocean Drilling Program. In order to study the relationship between sedimentary texture and the presence of gas hydrates, we have compared these results with the main textural and compositional data available from the same area. Most of the disturbed analyzed samples from the summit and the western flank of southern Hydrate Ridge show a mean grain size coarser than the average mean grain size of the hemipelagic samples from the same area. The depositional features of the sediments are not recognised due to disturbance. However, their granulometric statistical parameters and distribution curves, and magnetic susceptibility logs indicate that they correspond to a turbidite facies. These results suggest that gas hydrates in the southern Hydrate Ridge could form preferentially in coarser grain-size layers that could act as conduits feeding gas from below the BSR. Two samples from the uppermost metres near the seafloor at the summit of the southern Hydrate Ridge show a finer mean grain-size value than the average of hemipelagic samples. They were located where the highest amount of gas hydrates was detected, suggesting that in this area the availability of methane gas was high enough to generate gas hydrates, even within low-permeability layers. The mineralogical composition of the soupy and mousse-like sediments does not show any specific characteristic with respect to the other samples from the southern Hydrate Ridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative paleointensity (RPI) method assumes that the intensity of post depositional remanent magnetization (PDRM) depends exclusively on the magnetic field strength and the concentration of the magnetic carriers. Sedimentary remanence is regarded as an equilibrium state between aligning geomagnetic and randomizing interparticle forces. Just how strong these mechanical and electrostatic forces are, depends on many petrophysical factors related to mineralogy, particle size and shape of the matrix constituents. We therefore test the hypothesis that variations in sediment lithology modulate RPI records. For 90 selected Late Quaternary sediment samples from the subtropical and subantarctic South Atlantic Ocean a combined paleomagnetic and sedimentological dataset was established. Misleading alterations of the magnetic mineral fraction were detected by a routine Fe/kappa test (Funk, J., von Dobeneck, T., Reitz, A., 2004. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, pp. 239-262). Samples with any indication of suboxic magnetite dissolution were excluded from the dataset. The parameters under study include carbonate, opal and terrigenous content, grain size distribution and clay mineral composition. Their bi- and multivariate correlations with the RPI signal were statistically investigated using standard techniques and criteria. While several of the parameters did not yield significant results, clay grain size and chlorite correlate weakly and opal, illite and kaolinite correlate moderately to the NRM/ARM signal used here as a RPI measure. The most influential single sedimentological factor is the kaolinite/illite ratio with a Pearson's coefficient of 0.51 and 99.9% significance. A three-member regression model suggests that matrix effects can make up over 50% of the observed RPI dynamics.