5 resultados para State Space Analysis

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The North Sea autumn-spawning herring (Clupea harengus) stock consists of a set of different spawning components. The dynamics of the entire stock have been well characterized, but although time-series of larval abundance indices are available for the individual components, study of the dynamics at the component level has historically been hampered by missing observations and high sampling noise. A simple state-space statistical model is developed that is robust to these problems, gives a good fit to the data, and proves capable of both handling and predicting missing observations well. Furthermore, the sum of the fitted abundance indices across all components proves an excellent proxy for the biomass of the total stock, even though the model utilizes information at the individual-component level. The Orkney-Shetland component appears to have recovered faster from historic depletion events than the other components, whereas the Downs component has been the slowest. These differences give rise to changes in stock composition, which are shown to vary widely within a relatively short time. The modelling framework provides a valuable tool for studying and monitoring the dynamics of the individual components of the North Sea herring stock.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Marine mammals forage in dynamic environments characterized by variables that are continuously changing in relation to large-scale oceanographic processes. In the present study, behavioural states of satellite-tagged juvenile southern elephant seals (n = 16) from Marion Island were assessed for each reliable location, using variation in turning angle and speed in a state-space modelling framework. A mixed modelling approach was used to analyse the behavioural response of juvenile southern elephant seals to sea-surface temperature and proximity to frontal and bathymetric features. The findings emphasised the importance of frontal features as potentially rewarding areas for foraging juvenile southern elephant seals and provided further evidence of the importance of the area west of Marion Island for higher trophic-level predators. The importance of bathymetric features during the transit phase of juvenile southern elephant seal migrations indicates the use of these features as possible navigational cues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Aral Sea is located in an arid region with much sand and salt deposits in the surrounding barren open land. Hence, significant displacements of sediments into the lakebed by the action of wind, water, gravity, or snow are likely. The bathymetry of the lake was last observed in the 1960s, and within the last half century, the structure of the lakebed has changed. Based on satellite observations of the temporal changes of shoreline (Landsat optical remote sensing) and water level (multi-mission satellite altimetry) over more than one decade an updated bathymetric chart for the East Basin of the Aral Sea has been generated. During this time, the geometry of the shallow East Basin experienced strong fluctuations due to the occurrence of periods of drying and strong inflow. By the year 2014 the East Basin fell dry. The dynamic behavior of the basin allowed for estimating the lake's bathymetry from a series of satellite-based information. The river mouth made its impression in the present East Aral Sea, because its shrinking led to the inflow of much sediment into the lake's interior. In addition, salt deposits along the shorelines increased the corresponding elevation, a phenomenon that is more pronounced in the reduced lakebed because of increased salinity. It must be noted that height estimates from satellite altimetry were only possible down to a minimum elevation of 27 m above sea level due to a lack of reliable altimetry data over the largely reduced water surface. In order to construct a complete bathymetric chart of the lakebed of the East Aral Sea heights below 27 m were obtained solely from Landsat optical images following the SRB (Selected Region Boundary) approach as described by Singh et al. (2015).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arctic sea ice is declining rapidly, making it vital to understand the importance of different types of sea ice for ice-dependent species such as polar bears Ursus maritimus. In this study we used GPS telemetry (25 polar bear tracks obtained in Svalbard, Norway, during spring) and high-resolution synthetic aperture radar (SAR) sea-ice data to investigate fine-scale space use by female polar bears. Space use patterns differed according to reproductive state; females with cubs of the year (COYs) had smaller home ranges and used fast-ice areas more frequently than lone females. First-passage time (FPT) analysis revealed that females with COYs displayed significantly longer FPTs near (<10 km) glacier fronts than in other fast-ice areas; lone females also increased their FPTs in such areas, but they also frequently used drifting pack ice. These results clearly demonstrate the importance of fast-ice areas, in particular close to glacier fronts, especially for females with COYs. Access to abundant and predictable prey (ringed seal pups), energy conservation and reluctance to cross large open water areas are possible reasons for the observed patterns. However, glacier fronts are retracting in Svalbard, and declines in land-fast ice have been notable over the past decade. The eventual disappearance of these important habitats might become critical for the survival of polar bear cubs in Svalbard and other regions with similar habitat characteristics. Given the relatively small size of many fast-ice areas in Svalbard, the results observed in this study would not have been revealed using less accurate location data or lower-resolution sea-ice data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.