162 resultados para Standard of living
em Publishing Network for Geoscientific
Resumo:
In groundwater-fed fen peatlands, the surface biomass decays rapidly and, as a result, highly humified peat is formed. A high degree of humification constrains palaeoecological studies because reliable identification of plant remains is hampered. Organic geochemistry techniques as a means of identifying historical plant communities have been successfully applied tobog peat. The method has also been applied to fen peat, but without reference to the composition of fen plants. We have applied selected organic geochemistry methods to determine the composition of the neutral lipid fractions from 12 living fen plants, to investigate the potential for the distributions to characterize and separate different fen plants and plant groups. Our results show correspondence with previous studies, e.g. C23 and C25n-alkanes dominating Sphagnum spp. and C27 to C31 alkanes dominating vascular plants. However, we also found similarities in n-alkane distributions between Sphagnum spp. and the below ground parts of some vascular plants. We tested the efficiency of different n-alkane ratios to separate species and plant groups. The ratios used for bog studies (e.g. n-C23/n-C25 and n-C23/n-C29) did not work as consistently for fen plants. Some differences in sterol distribution were found between vascular plants and mosses; in general vascular plants had a higher concentration of sterols. When distributions of n-alkanes, n-alkane ratios and sterols were all included as variables, redundancy analysis (RDA) separated different plant groups into their own clusters. Our results imply that the pattern for bog biomarkers cannot directly be applied to fen environments. Nevertheless, they encourage further testing to determine whether or not the identification of plant groups, plants or plant parts from highly humified peat is possible by applying fen species-specific biomarker proxies.
Resumo:
Variation of the d13C of living (Rose Bengal stained) deep-sea benthic foraminifera is documented from two deep-water sites (~2430 and ~3010 m) from a northwest Atlantic Ocean study area 275 km south of Nantucket Island. The carbon isotopic data of Hoeglundina elegans and Uvigerina peregrina from five sets of Multicorer and Soutar Box Core samples taken over a 10-month interval (March, May, July, and October 1996 and January 1997) are compared with an 11.5 month time series of organic carbon flux to assess the effect of organic carbon flux on the carbon isotopic composition of dominant taxa. Carbon isotopic data of Hoeglundina elegans at 3010 m show 0.3 per mil lower mean values following an organic carbon flux maximum resulting from a spring phytoplankton bloom. This d13C change following the spring bloom is suggested to be due to the presence of a phytodetritus layer on the seafloor and the subsequent depletion of d13C in the pore waters within the phytodetritus and overlying the sediment surface. Carbon isotopic data of H. elegans from the 2430 m site show an opposite pattern to that found at 3010 m with a d13C enrichment following the spring bloom. This different pattern may be due to spatial variation in phytodetritus deposition and resuspension or to a limited number of specimens recovered from the March 1996 cruise. The d13C of Uvigerina peregrina at 2430 m shows variation over the 10 month interval, but an analysis of variance shows that the variability is more consistent with core and subcore variability than with seasonal changes. The isotopic analyses are grouped into 100 µm size classes on the basis of length measurements of individual specimens to evaluate d13C ontogenetic changes of each species. The data show no consistent patterns between size classes in the d13C of either H. elegans or U. peregrina. These results suggest that variation in organic carbon flux does not preferentially affect particular size classes, nor do d13C ontogenetic changes exist within the >250 to >750 µm size range for these species at this locality. On the basis of the lack of ontogenetic changes a range of sizes of specimens from a sample can be used to reconstruct d13C in paleoceanographic studies. The prediction standard deviation, which is composed of cruise, core, subcore, and residual (replicate) variability, provides an estimate of the magnitude of variability in fossil d13C data; it is 0.27 per mil for H. elegans at 3010 m and 0.4 per mil for U. peregrina at the 2430 m site. Since these standard deviations are based on living specimens, they should be regarded as minimum estimates of variability for fossil data based on single specimen analyses. Most paleoceanographic reconstructions are based on the analysis of multiple specimens, and as a result, the standard error would be expected to be reduced for any particular sample. The reduced standard error resulting from the analysis of multiple specimens would result in the seasonal and spatial variability observed in this study having little impact on carbon isotopic records.
Resumo:
Major findings of the Survey of Living Conditions in the Arctic (SLiCA) are: (1) A combination of traditional activities and cash employment is the prevailing lifestyle of Arctic indigenous peoples; (2) family ties, social support of each other, and traditional activities have a lot to do with why indigenous people choose to remain in Arctic communities; (3) well-being is closely related to job opportunities, locally available fish and game, and a sense of local control. Well-being and depression (and related problems like suicide) are flip sides of the same coin. Improving well-being may reduce social problems; and, (4) health conditions vary widely in the Arctic: three-in-four Greenlandic Inuit self-rate their health as at least very good compared with one-in-two Canadian and Alaska Inuit and one-in-five Chukotka indigenous people. Findings are based on 7,200 interviews in a probability sample of Inupiat settlement regions of Alaska, the four Inuit settlement regions of Canada, all of Greenland, and the Anadyrskij, Anadyr, Shmidtovs, Beringovskij, Chukotskij, Iujl'tinskij, Bilibinskij, Chaunskij, Providenskij, Uel'Kal' districts of Chukotka. Indigenous people and researchers from Greenland, Russia, Canada, the United States, Denmark, Norway, Sweden, and Finland collaborated on all phases of the study.
Resumo:
After death of benthic and planktic foraminifera their tests intensive dissolve in sediments of the upper sublittoral zone (depth 30-60 m) in the highest productivity area of surface water in the northern Peruvian region. Dissolution of fine pelitic ooze is more intensive than of sandy sediments. Rate of dissolution is lower in the lower sublittoral zone (60-200 m) than in the upper part of the zone. Within the upper bathyal zone (300-500 m) dissolution decreases and results to accumulation of carbonate test in this zone. Benthic tests are more abundant than planktic ones. Very poor species composition and a peculiar set of species are characteristic of foraminiferal assemblages found in the sublittoral and upper bathyal zones along the Peruvian coast.