983 resultados para Standard deviation (STD)
em Publishing Network for Geoscientific
(Table 1) Sample information and analytical data for bulk material with standard deviation (1 Sigma)
Resumo:
An isobathic transect of marine surface sediments from 1°N to 28°S off southwest Africa was used to further evaluate the potential of the chain length distribution and carbon stable isotope composition of higher plant n-alkanes as proxies for continental vegetation and climate conditions. We found a strong increase in the n-C29-33 weighted mean average d13C values from -33 per mil near the equator to around -26 per mil further south. Additionally, C25-35n-alkanes reveal a southward trend of increasing average chain length from 30.0 to 30.5. The data reflect the changing contribution of plants employing different photosynthetic pathways (C3 and C4) and/or being differently influenced by the environmental conditions of their habitat. The C4 plant proportions calculated from the data (ca. 20% for rivers draining the rainforest, to ca. 70% at higher latitude) correspond to the C4 plant abundance in continental catchment areas postulated by considering prevailing wind systems and river outflows. Furthermore, the C4 plant contribution to the sediments correlates with the mean annual precipitation and aridity at selected continental locations in the postulated catchment areas, suggesting that the C4 plant fraction in marine sediments can be used to assess these environmental parameters.
Resumo:
Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and d18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.
Resumo:
Acritarchs have received limited attention in palynological studies of the Cenozoic, although they have much potential both for refining Neogene and Quaternary stratigraphy, especially in mid- and high northern latitudes, and developing palaeoceanographical reconstructions. Here we formally describe and document the stratigraphical and palaeotemperature ranges (from foraminiferal Mg/Ca) of four new acritarch species: Cymatiosphaera? aegirii sp. nov., Cymatiosphaera? fensomei sp. nov., Cymatiosphaera? icenorum sp. nov. and Lavradosphaera canalis sp. nov. In reviewing the stratigraphical distributions of all species of the genus Lavradosphaera De Schepper & Head, 2008, we demonstrate their correlation potential between the North Atlantic and Bering Sea in the Pliocene. Additionally, Lavradosphaera lucifer De Schepper & Head, 2008 and Lavradosphaera canalis sp. nov., while not themselves overlapping stratigraphically, have morphological intermediates that do partially overlap and may represent an evolutionary trend consequent upon climate cooling in the Late Pliocene. Finally, we show that the highest abundances of the acritarchs presented here were living in the eastern North Atlantic, in surface-water temperatures not very different from today.
Th and U isotopes, dose rates and ages of marine shells and sediment of core GIK14350, north Germany
Resumo:
The ESR dating method was applied to marine shells taken from a sediment core from Dagebüll, Schleswig-Holstein. Four samples from two different depths of the core (17.5 m and 25-26 m), separated by a 2.76 meter thick clay layer (Turritella Clay), yielded identical ages within the limits of error. They indicated an assignment to the oxygen isotope stage 5, thus confirming the stratigraphic age. In addition, the ESR-ages confirm the interpretation of Lomitschka et al. (1997, doi:10.2312/meyniana.1997.49.85), that the Th/U-ages of shells below the clay layer are reliable, whereas shells located above the clay layer, which were strongly influenced by percolating groundwaters of an open system, yielded falsified Th/U-ages.
Resumo:
We compare six high-resolution Holocene, sediment cores along a S-N transect on the Norwegian-Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10-102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than +- 1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas-Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S-N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60-69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72-77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S-N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000-8000, 5500-3000 and 1000 and ~400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.
Resumo:
The upper 1200 m of pre-Pliocene sediment recovered by Cape Roberts Project (CRP) drilling off the Victoria Land coast of Antarctica between 1997-1999 has been subdivided into 54 unconformity-bound stratigraphic sequences, spanning the period c. 32 to 17 Ma. The sequences are recognised on the basis of the cyclical vertical stacking of their constituent lithofacies, which are enclosed by erosion surfaces produced during the grounding of the advancing ice margin onto the sea floor. Each sequence represents deposition in a range of offshore shelf to coastal glacimarine sedimentary environments during oscillations in the ice margin across the Western Ross Sea shelf, and coeval fluctuations in water depth. This paper applies spectral analysis techniques to depth- and time-series of sediment grain size (500 samples) for intervals of the core with adequate chronological data. Time series analysis of 0.5-l.0m-spaced grainsize data spanning sequences 9-11 (CRP-2/2A) and sequences 1-7 (CRP-3) suggests that the length of individual sequences correspond to Milankovitch frequencies, probably 41 k.y., but possibly as low as 100 k.y. Higher frequency periodic components at 23 k.y. (orbital precession) and 15-10 k.y. (sub-orbital) are recognised at the intrasequence-scale, and may represent climatic cycles akin to the ice rafting episodes described in the North Atlantic Ocean during the Quaternary. The cyclicity recorded by glacimarine sequences in CRP core provides direct evidence from the periphery of Antarctica for orbital oscillations in the size of the Oligocene-Early Miocene East Antarctic Ice Sheet.