6 resultados para Stadiums phenological
em Publishing Network for Geoscientific
Resumo:
A 30-year series (1978-2007) of photographic records were analysed to determine changes in lake ice cover, local (low elevation) and montane (high elevation) snow cover and phenological stages of mountain birch (Betula pubescens ssp. czerepanovii) at the Abisko Scientific Research Station, Sweden. In most cases, the photographic-derived data showed no significant difference in phenophase score from manually observed field records from the same period, demonstrating the accuracy and potential of using weekly repeat photography as a quicker, cheaper and more adaptable tool to remotely study phenology in both biological and physical systems. Overall, increases in ambient temperatures coupled with decreases in winter ice and snow cover, and earlier occurrence of birch foliage, signal a reduction in the length of winter, a shift towards earlier springs and an increase in the length of available growing season in the Swedish sub-arctic.
Resumo:
Notes from Henrik de Nie: The project started as a phenological study in cooperation with the (Dutch) meteorological institute (KNMI) to register the time of arrival of Fitis and Tjiftaf. During 1951 to 1969 he went every day to the wood (except 1966, in this year his wife died). Thereafter he went no more daily, but because he knew the wood very well and he was free to choice the day on which he did a survey, therefore he choose days with relatively good weather. He did not observe very common bird species, maybe because they are dependent on nest boxes and he did not want to be dependent on the management of the nest box-people (in fact I forgot precisely his arguments, and now I cannot ask him this): Common Starling; Eurasian Tree Sparrow (not common); Great Tit; Eurasian Blue Tit Pieter mentioned 14 species that scored many zero values or only one observation: Stock Dove; Common Cuckoo; Lesser Spotted Woodpecker; Eurasian Golden Oriole; Eurasian Nuthatch; Short-toed Treecreeper; Common Nightingale; Marsh Warbler; Lesser Whitethroat; Goldcrest; Common Firecrest (after 1970 he had difficulties in hearing these two species); Spotted Flycatcher; Eurasian Bullfinch; Black Woodpecker He also mentioned species that he found much fewer as: European Greenfinch; European Pied Flycatcher; Long-eared Owl; Red Crossbill; Sedge Warbler; Icterine Warbler; Eurasian Woodcock; Eurasian Siskin; European Green Woodpecker; Great Spotted Woodpecker; Eurasian Hobby; Western Barn Owl; Woodlark; Common Wood Pigeon; Little Owl; European Crested Tit; Hawfinch. But for these species I think that observations are strongly dependent on the number of visits to the wood. Also here, many zeros and few 1 x during the whole series of visits.
Resumo:
We report on a revisit in 2009 to sites where vegetation was recorded in 1967 and 1970 on Disko Island, West Greenland. Re-sampling of the same clones of the grass Phleum alpinum after 39 years showed complete stability in biometrics but dramatic earlier onset of various phenological stages that were not related to changes in population density. In a fell-field community, there was a net species loss, but in a herb-slope community, species losses balanced those that were gained. The type of species establishing and increasing in frequency and/or cover abundance at the fell-field site, particularly prostrate dwarf shrubs, indicates a possible start of a shift towards a heath, rather than a fell-field community. At the herb-slope site, those species that established or increased markedly in frequency and/or cover abundance indicate a change to drier conditions. This is confirmed both by the decrease in abundance of Alchemilla glomerulans and Epilobium hornemanii, and the drying of a nearby pond. The causes of these changes are unknown, although mean annual temperature has risen since 1984.
Resumo:
hyDRaCAT Spectral Reflectance Library for tundra provides the surface reflectance data and the bidirectional reflectance distribution function (BRDF) of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites. The aim of this dataset is the hyperspectral and spectro-directional reflectance characterization as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. The spectroscopic and field spectro-goniometric measurements were undertaken on the YAMAL2011 expedition of representative Siberian vegetation fields and on the North American Arctic Transect NAAT2012 expedition of Alaskan vegetation fields both belonging to the Greening-of-the-Arctic (GOA) program. For the field spectroscopy each 100 m2 vegetation study grid was divided into quadrats of 1 × 1 m. The averaged reflectance of all quadrats represents the spectral reflectance at the scale of the whole grid at the 10 × 10 m scale. For the surface radiometric measurements two GER1500 portable field spectroradiometers (Spectra Vista Corporation, Poughkeepsie, NY, USA) were used. The GER1500 measures radiance across the wavelength range of 350-1,050 nm, with sampling intervals of 1.5 nm and a radiance accuracy of 1.2 × 10**-1 W/cm**2/nm/sr. In order to increase the signal-to-noise ratio, 32 individual measurements were averaged per one target scan. To minimize variations in the target reflectance due to sun zenith angle changes, all measurements at one study location have been performed under similar sun zenith angles and during clear-sky conditions. The field spectrometer measurements were carried out with a GER1500 UV-VIS spectrometer The spectrogoniometer measurements were carried out with a self-designed spectro-goniometer: the Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS, patent publication number: DE 10 2011 117 713.A1). The ManTIS was equipped with the GER1500 spectrometer allowing spectro-directional measurements with up to 30° viewing zenith angle by full 360° viewing azimuth angles. Measurements in central Yamal (Siberia) at the research site 'Vaskiny Dachi' were carried out in the late summer phenological state from August 12 2011 to August 28 2011. All measurements in Alaska along the North South transect on the North Slope were taken between 29 June and 11 July 2012, ensuring that the vegetation was in the same phenological state near peak growing season.