3 resultados para Spontaneous locomotor activity
em Publishing Network for Geoscientific
Resumo:
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (-1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol/L) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol/L). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl-, [SO4]2-) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol/L) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol/L). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, -1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats/s at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.
Resumo:
The amount of energy that organisms can allocate to self-maintenance and/or reproduction largely depends on their foraging strategies. Because of corticosterone (CORT) involvement in the control of energy metabolism, food intake and locomotor activity, recent studies have sought to demonstrate the role of this hormone in foraging decisions and performance. Moreover, considerable recent advances in animal-attached loggers now allow the study of behaviour in free-living animals. In order to assess the effects of CORT administration on the foraging behaviour of free-living Adelie Penguins Pygoscelis adeliae, we studied a group with CORT implants and a control group without CORT implants, by attaching time-depth recorders to the two groups and monitoring them throughout up to seven consecutive foraging trips during the guard stage (in Adelie Land, Antarctica). We found that foraging trips duration was similar between both groups. Dive durations, time spent at the bottom phase of dives, and the number of undulations per dive of CORT-implanted birds were all significantly higher than those of controls. However, CORT-implanted birds performed fewer dives overall (ca. 4,400) than controls (ca. 6,250) and spent many (13 and 6 times for penguins #3 and #4, respectively) long periods (>3 h) without diving. The low foraging effort and long resting periods support the view that CORT-implanted birds probably gained less energy than did the control birds. CORT treatment appears then to result in redirecting bird behaviour from costly activity (i.e. reproduction) to a behaviour promoting the preservation of energy reserves. Future studies are therefore needed to assess body condition and reproductive success of CORT-manipulated birds in parallel with the recording of their diving performances.