7 resultados para Spell

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. (1990) from ODP site 677 in the equatorial Pacific differs significantly from previous ones (e.g. Kominz and Pisias, 1979 doi:10.1126/science.204.4389.171; Morley and Hays, 1981 doi:10.1016/0012-821X(81)90034-0, Imbrie et al. 1984), yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values (Mankinen and Dalrymple, 1979 doi:10.1029/JB084iB02p00615; Berggren et al., 1985; Harland and Armstrong, 1989) but are in good agreement with recent Ar/Ar dating (Baksi et al., 1991; 1992 doi:10.1126/science.256.5055.356; Spell and McDougall, 1992 doi:10.1029/92GL01125). These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in delta18O are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal (Rostek et al., 1993 doi:10.1038/364319a0). Three additional precession-related cycles are observed in oxygen isotope stages 17 and 18 of core MD900963, compared to the SPECMAP composite curves (Imbrie et al., 1984; Prell et al., 1986 doi:10.1029/PA001i002p00137), and stage 21 clearly presents three precession oscillations, as predicted by Shackleton et al. (1990). The precession peaks found in the delta18O record from core MD900963 are in excellent agreement with climatic oscillations predicted by the astronomical theory of climate. Our delta18O record therefore permits the development of an accurate astronomical time-scale. Based on our age model, the Brunhes-Matuyama reversal is dated at 775 +/- 10 ka, in good agreement with the age estimate of 780 ka obtained by Shackleton et al. (1990) and recent radiochronological Ar/Ar datings on lavas (Baksi et al., 1991; 1992; Spell and McDougall, 1992). We developed a new low-latitude, Upper Pleistocene delta18O reference record by stacking and tuning the delta18O records from core MD900963 and site 677 to orbital forcing functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on the analysis of lake sediments retrieved from the deepest part of Lake Nam Co (Tibetan Plateau). One gravity core of 115 cm length, covering the last ~ 4000 cal BP, was analyzed for geochemical and biological parameters. High organic content at ~ 4000 cal BP and the coinciding presence of pyrite framboids until ~ 2000 cal BP point to hampered decomposition of organic material due to anoxic conditions within the lake sediments. At the same time sedimentological and biological proxies suggest a rather high lake level, but still ~ 5 m below the recent one, with less saline lake water due to enhanced monsoonal activity. During this time a change in the source of organic matter to lowered input of terrestrial components is observed. A rather quick shift to a dry environment with less monsoonal influence and a lake level ~ 15 m lower than today at ~ 2000 cal BP lead to the oxygenation of sediment, the degradation of organic matter and the absence of pyrite. Oscillations of the lake level thereafter were of minor amplitude and not able to establish anoxia at the lake bottom again. A wet spell between ~ 1500 cal BP and ~ 1150 cal BP is visible in proxies referring to catchment hydrology and the ostracod-based water depth transfer function gives only a slightly elevated lake level. The last ~ 300 years are characterized by low TOC and rising TN values reflecting enhanced nutrient supply and hence an advancing influence of human activity in the catchment. Decreasing TOC/TN values point to a complete shift to almost solely aquatic biomass production. These results show that hydrological variations in terms of lake level change based on monsoonal strength can be linked to redox conditions at the lake bottom of Nam Co. Comparison with other archives over larger parts of the Tibetan Plateau and beyond exhibits a rather homogeneous climatic pattern throughout the late Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three marine sediment cores distributed along the Norwegian (MD95-2011), Barents Sea (JM09-KA11-GC), and Svalbard (HH11-134-BC) continental margins have been investigated in order to reconstruct changes in the poleward flow of Atlantic waters (AW) and in the nature of upper surface water masses within the eastern Nordic Seas over the last 3000 yr. These reconstructions are based on a limited set of coccolith proxies: the abundance ratio between Emiliania huxleyi and Coccolithus pelagicus, an index of Atlantic vs. Polar/Arctic surface water masses; and Gephyrocapsa muellerae, a drifted coccolith species from the temperate North Atlantic, whose abundance changes are related to variations in the strength of the North Atlantic Current. The entire investigated area, from 66 to 77° N, was affected by an overall increase in AW flow from 3000 cal yr BP (before present) to the present. The long-term modulation of westerlies' strength and location, which are essentially driven by the dominant mode of the North Atlantic Oscillation (NAO), is thought to explain the observed dynamics of poleward AW flow. The same mechanism also reconciles the recorded opposite zonal shifts in the location of the Arctic front between the area off western Norway and the western Barents Sea-eastern Fram Strait region. The Little Ice Age (LIA) was governed by deteriorating conditions, with Arctic/Polar waters dominating in the surface off western Svalbard and western Barents Sea, possibly associated with both severe sea ice conditions and a strongly reduced AW strength. A sudden short pulse of resumed high WSC (West Spitsbergen Current) flow interrupted this cold spell in eastern Fram Strait from 330 to 410 cal yr BP. Our dataset not only confirms the high amplitude warming of surface waters at the turn of the 19th century off western Svalbard, it also shows that such a warming was primarily induced by an excess flow of AW which stands as unprecedented over the last 3000 yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new annual sedimentological proxies and sub-annual element scanner data from the Lago Grande di Monticchio (MON) sediment record for the sequence 76-112 thousand years before present (ka). They are combined with the previously published decadal to centennial resolved pollen assemblage in order to provide a comprehensive reconstruction of six major abrupt stadial spells (MON 1-6) in the central Mediterranean during early phase of the last glaciation. These climatic oscillations are defined by intervals of thicker varves and high Ti-counts and coincide with episodes of forest depletion interpreted as Mediterranean stadial conditions (cold winter/dry summer). Our chronology, labelled as MON-2014, has been updated for the study interval by tephrochronology and repeated and more precise varve counts and is independent from ice-core and speleothem chronologies. The high-resolution Monticchio data then have been compared in detail with the Greenland ice-core d18O record (NorthGRIP) and the northern Alps speleothem d18Ocalcite data (NALPS). Based on visual inspection of major changes in the proxy data, MON 2-6 are suggested to correlate with Greenland stadials (GS) 25-20. MON 1 (Woillard event), the first and shortest cooling spell in the Mediterranean after a long phase of stable interglacial conditions, has no counterpart in the Greenland ice core, but coincides with the lowest isotope values at the end of the gradual decrease in d18Oice in NorthGRIP during the second half of the Greenland interstadial (GI) 25. MON 3 is the least pronounced cold spell and shows gradual transitions, whereas its NorthGRIP counterpart GS 24 is characterized by sharp changes in the isotope records. MON 2 and MON 4 are the longest most and pronounced oscillations in the MON sediments in good agreement with their counterparts identified in the ice and spelethem records. The length of MON 4 (correlating with GS 22) supports the duration of stadial proposed by the NALPS timescales and suggests ca 500 yr longer duration than calculated by the ice-core chronologies GICC05modelext and AICC2012. Absolute dating of the cold spells provided by the MON-2014 chronology shows good agreement among the MON-2014, the GICC05modelext and the NALPS timescales for the period between 112 and 100 ka. In contrast, the MON-2014 varve chronology dates the oscillations MON 4 to MON 6 (92-76 ka) ca. 3,500 years older than the most likely corresponding stadials GS 22 to GS 20 by the other chronologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope, foraminifera and ice rafted detritus (IRD) records covering the last interglacial (the Eemian) from 7 sediment cores in a transect from the Norwegian to the Greenland Sea are presented. The percentages of Neogloboquadrina pachyderma (s.) and Globigerina quinqueloba, foraminiferal content, and to some extent planktonic stable isotope records, demonstrate marked, regional changes in surface water conditions. Importantly, the variability in the abundances of subpolar foraminifera and foraminiferal content are not coherent, implying that these two types of proxies fluctuated independently of each other and most likely reflect changes in sea surface temperature and surface water carbonate productivity, respectively. Paleoceanographic reconstructions demonstrate significant movements of the oceanographic fronts. At the warmest periods, the Arctic front was located far west of the present-day location, at least within the Iceland Sea region. At 126-125 ka, this was most probably due to a stronger or more westerly located Norwegian current. Within the later warm intervals, higher heat flux to the western part of the basin reflects a combination of a stronger Irminger current and/or a weaker east Greenland current. During the main cold spell at ~124 ka, a diffuse Arctic front had a more southeasterly location than today, and intrusion of Atlantic surface waters was probably limited to a narrow corridor in the Eastern Norwegian Sea. A general correspondence between minima in sea surface temperatures and light benthic delta18O may indicate enhanced influx of freshwater to the basin within the cold events. At least in the Norwegian Sea, we find some evidence that the changes in surface water conditions are associated with changes in deep water ventilation. The majority of the fluctuations may be related to occasional breakdown or reduction of the thermohaline circulation within the Nordic seas. In the earliest Eemian, this could result from meltwater forcing. During the remaining part of the last interglacial the fine balance between temperature and salinity, which the deep water formation is depending on, may have been disturbed by periodic increases in fresh water supply or variable influx of warm Atlantic surface waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five plankton groups, including diatoms, radiolarians, coccolithophores, foraminifers, and dinoflagellate cysts, were synoptically analyzed in six sediment cores and two sediment traps from the Norwegian-Greenland Sea and the North Atlantic in order to provide more detailed insights into the paleoclimatic and paleoceanographic evolution and the development of plankton assemblages of the northern North Atlantic during the last 15,000 years. Based on Q-mode factor analyses, cold, warm, transitional, and relict assemblages were calculated for each of the plankton groups. Data from the different plankton groups complement one another, although they are not always consistent. However, the multiple plankton-group data set is able to bridge intervals in which single groups lack preservation or the ability to react to changes. Synoptically interpreted, the results provide a detailed picture of the response of plankton assemblages to environmental changes during the time period investigated, which includes the B0lling/Aller0d interstadial, the Younger Dryas cold spell, Termination IB, and, in all likelihood, also the "8,200 Event", and the Hypsithermal (approximately 8-4 14C ky BP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea surface temperatures (SSTs) recorded by alkenones and oxygen isotopes in the Alboran basin are used here to describe, at an unprecedented fine temporal resolution, the present interglaciation (PIG, initiated at 11.7 ka BP), the last interglaciation (LIG, onset approximately at 129 ka) and respective deglaciations. Similarities and dissimilarities in the progression of these periods are reviewed in comparison with ice cores and stalagmites. Cold spells coeval with the Heinrich events (H) described in the North Atlantic include multi-decadal scale oscillations not previously obvious (up to 4 °C in less than eight centuries within the stadials associated with H1 and H11, ca 133 ka and 17 ka respectively). These abrupt oscillations precede the accumulation of organic rich layers deposited when perihelion moves from alignment with NH spring equinox to the summer solstice, a reference for deglaciations. Events observed during the last deglaciation at 17 ka, 14.8 ka and 11.7 ka are reminiscent of events occurred during the penultimate deglaciation at ca 136 ka, 132 ka and 129 ka, respectively. The SST trend during the PIG is no more than 2 °C (from 20 °C to 18 °C; up to ?0.2 °C/ka). The trend is steeper during the LIG, i.e. up to a 5 °C change from the early interglaciation to immediately before the glacial inception (from 23 °C to 18 °C; up to -0.4 °C/ka). Events are superimposed upon a long term trend towards colder SSTs, beginning with SST maxima followed by temperate periods until perihelion aligned with the NH autumn equinox (before ca 5.3 ka for the PIG and 121 ka for the LIG). A cold spell of around eight centuries at 2.8 ka during the PIG was possibly mimicked during the LIG at ca 118 ka by a SST fall of around 1 °C in a millennium. These events led interglacial SST to stabilise at around 18 °C. The glacial inception, barely evident at the beginning ca 115 ka (North Atlantic event C25, after perihelion passage in the NH winter solstice), culminated with a SST drop of at least 2 °C in two millennia (event C24, ca 111 ka). The Little Ice Age (0.7 ka) also occurred after the latest perihelion passage in the NH winter solstice and could be an example of how a glacial pre-inception event following an interglaciation might be.