72 resultados para Specific surface area
em Publishing Network for Geoscientific
(Table 52) Specific surface area of Fe-Mn crusts and substrata from the Cape Verde and Canary Basins
Resumo:
Spectral albedo has been measured at Dome C since December 2012 in the visible and near infrared (400 - 1050 nm) at sub-hourly resolution using a home-made spectral radiometer. Superficial specific surface area (SSA) has been estimated by fitting the observed albedo spectra to the analytical Asymptotic Approximation Radiative Transfer theory (AART). The dataset includes fully-calibrated albedo and SSA that pass several quality checks as described in the companion article. Only data for solar zenith angles less than 75° have been included, which theoretically spans the period October-March. In addition, to correct for residual errors still affecting data after the calibration, especially at the solar zenith angles higher than 60°, we produced a higher quality albedo time-series as follows: In the SSA estimation process described in the companion paper, a scaling coefficient A between the observed albedo and the theoretical model predictions was introduced to cope with these errors. This coefficient thus provides a first order estimate of the residual error. By dividing the albedo by this coefficient, we produced the "scaled fully-calibrated albedo". We strongly recommend to use the latter for most applications because it generally remains in the physical range 0-1. The former albedo is provided for reference to the companion paper and because it does not depend on the SSA estimation process and its underlying assumptions.
Resumo:
Particulate matter concentration and water temperature at 5 m depth level are compared in the Canary upwelling region to the east of the Cape Blanc. It was found that accumulation of particulate matter was timed to hydrofrontal zones. Particle size distributions for particulate matter obtained using the Coulter counter agree with the hyperbolic law (of the Junge type) with double values for the size parameter, which changes for particle diameters of 5-6 microns. Average values for the size parameter in the region of the upwelling are significantly lower than in the open ocean. Specific surface of particulate matter associated with reactivity differs significantly on different sides of the upwelling front and increases beyond the upwelling.
Resumo:
Ocean acidification, caused by increased atmospheric carbon dioxide (CO2) concentrations, is currently an important environmental problem. It is therefore necessary to investigate the effects of ocean acidification on all life stages of a wide range of marine organisms. However, few studies have examined the effects of increased CO2 on early life stages of organisms, including corals. Using a range of pH values (pH 7.3, 7.6, and 8.0) in manipulative duplicate aquarium experiments, we have evaluated the effects of increased CO2 on early life stages (larval and polyp stages) of Acropora spp. with the aim of estimating CO2 tolerance thresholds at these stages. Larval survival rates did not differ significantly between the reduced pH and control conditions. In contrast, polyp growth and algal infection rates were significantly decreased at reduced pH levels compared to control conditions. These results suggest that future ocean acidification may lead to reduced primary polyp growth and delayed establishment of symbiosis. Stress exposure experiments using longer experimental time scales and lower levels of CO2 concentrations than those used in this study are needed to establish the threshold of CO2 emissions required to sustain coral reef ecosystems.