89 resultados para Speciation (Chemistry)
em Publishing Network for Geoscientific
Resumo:
The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4 nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2 nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2 nM); however, a surface survey showed higher concentrations (1-3 nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0 nM Fe equivalents, with complex stability log K'(FeL) = 21.4-23.5. Estimated concentrations of inorganic iron (Fe') ranged from 0.03 to 0.79 pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.
Resumo:
Iodine speciation analysis was carried out upon seawater samples collected in July 1993 at the DYFAMED station (43 °25?N, 7 °52?E) located in the northwestern Mediterranean Sea. Dissolved iodate and iodide were directly determined by differential pulse polarography and cathodic stripping square wave voltammetry, respectively, and organically bound iodine was estimated by wet-chemical oxidation with sodium hypochlorite. Iodate is the predominant species ranging from 416 nM in surface waters to 480 nM in bottom waters. Iodide is present in significant concentrations up to 60 nM in surface waters, undetectable between 500 and 1000 m depth and present in very low but measurable concentrations (about 6 nM) in deep waters. The vertical profile of total free iodine demonstrates observable removal from surface waters, slight enrichment at about 200 m depth and constant there below. Up to 40 nM of organically bound iodine has been estimated between 20 to 30 m. Factorial analysis of different iodine species with biologically relevant parameters provided strong evidence for iodine biophilic features.
Resumo:
Studies of sulfur behavior in the water column and in sediments in river and seawater mixing zone were conducted in three areas of the Black and Azov Seas. These investigations showed constancy of sulfate concentrations versus chlorinity. Sulfur isotope composition in sulfates of surface, bottom, and pore waters depended on sulfate contents and salinity. The dependence was complicated by partial sulfate depletion in pore water due to bacterial sulfate reduction and also by alteration of isotope composition. Surface sediments in mixing zones are characterized by intensive sulfate reduction, great variability of content and isotopic composition of reduced sulfur, and a low mean isotopic fractionation factor of sulfur.
Resumo:
Distribution of reduced sulfur forms in vertical sediment sections in deep-sea basins of the Atlantic Ocean is under study. Presence of weak sulfate reduction process resulted from low concentrations of reactive organic matter and differing by characteristic features of the initial stage of development. Interpretation of results is given on the base of consideration of dynamic redox equilibrium in the system: reduced sulfur - dissolved oxygen.
Resumo:
Sulfur speciation in bottom sediments from the area of the Peru upwelling has been studied. Data on sulfur contents in different compounds (sulfide, elemental, sulfate, pyritic and organic), water content, Eh, and organic carbon content in the bottom sediments have been obtained. The bottom sediments from the area are characterized by high content of organic carbon and low contents of total and reactive iron; this is typical for bottom sediments from ocean upwelling areas. Intense process of sulfate reduction occurs in the bottom sediments of the area, and accumulation of reduced sulfur compounds derivated from bacterial hydrogen sulfide does not exceed previously known values for other regions of the ocean.
Resumo:
Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310-350 cells mL-1 vs. 1600-2000 cells mL-1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.