52 resultados para South-western Australia
em Publishing Network for Geoscientific
Resumo:
The Late Quaternary benthic foraminifera of four deep-sea cores off Western Australia (ODP 122-760A, ODP 122-762B, BMR96GC21 and RC9-150) have been examined for evidence of increased surface productivity to explain the anomalously low sea-surface paleotemperatures inferred by planktic foraminifera for the last and penultimate glaciations. The delta13C trends of Cibicidoides wuellerstorfi, and differences between the delta13C trends of planktics (Globigerinoides sacculifer) and benthics (C. wuellerstorfi) in the four cores indicate that during stage 6 bottom waters were significantly depleted in delta13C, and strong delta13C gradients were established in the water column, while during stage 2 and the Last Glacial Maximum, delta13C trends did not differ greatly from that of the Holocene. Two main assemblages of benthic foraminifera were identified by principal component analyses: one dominated by Uvigerina peregrina, another dominated by U. proboscidea. Abundance of these Uvigerinids, and of taxa preferring an infaunal microhabitat, and of Epistominella exigua and Bulimina aculeata indicate that episodes of high influx of particulate organic matter were established in most sites during glacial episodes, and particularly so during stage 6, while evidence for upwelling during the Last Glacial Maximum is less strong. The Penultimate Glaciation upwellings were established within the areas of low sea-surface paleotemperature indicated by planktic foraminifera. During the Last Interglacial Climax, upwelling appears to have been established in an isolated region offshore from a strengthened Leeuwin Current off North West Cape. Last Glacial Maximum delta13C values of C. wuellerstorfi at waterdepths of less than 2000 m show smaller than global mean glacial-interglacial changes suggesting the development of a deep hydrological front. A similar vertical stratification/bathyal front was also established during the Penultimate Glaciation.
Resumo:
In 1970 a large deposit of ferromanganese nodules was discovered on the floor of the Indian Ocean southwest of Cape Leeuwin by the research vessel USNS Eltanin. This discovery, which was based largely on bottom photographs from about 20 stations, was discussed by Frakes (1975) and Kennett and Watkins (1975, 1976). The photographs suggest that the deposit spreads, nearly continuously, over 900 000km^2, and cores showed that the nodules are essentially confined to the sediment surface. Kennett and Watkins (op. cit.) pointed to the abundance of ripple and scour marks and current-formed lineations on the present surface, and of extensive disconformities in the cores, as evidence of strong present and past bottom currents in the region. They suggested that the current action had resulted in very low sedimentation rates, which had allowed the nodule field, named by them (1976) the 'Southeast Indian Ocean Manganese Pavement', to develop. In early 1976 the authors used the research vessel HMAS Diamantina for a 10-day cruise in the region to sample the nodules in order to study their chemistry and mineralogy. During the cruise 9 stations were occupied, 8 of them successfully (Figure 1), and about 2000 nodules were recovered from the sea bed. The apparatus used was a light box dredge on the ships hydrowire, which had a breaking strain of about one tonne. Although an attempt was made to reoccupy Eltanin photographic stations, it should be noted that positioning was by celestial navigation, so errors of up to 10 km are possible.
Resumo:
A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral delta18O. At 29°S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral delta18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral delta18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral delta18O demonstrate a high variability in spectral composition through time. Oscillations in the 5-7-y, 14-15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral delta18O suggests a rise in SST by 0.6°C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4°C since AD 1795 is inferred from the coral record.
Resumo:
Sediment trap moorings were deployed from September 21, 1997 through February 21, 1998 at three locations south of Australia along 140°E: at -47°S in the central Subantarctic Zone (SAZ) with traps at 1060, 2050, and 3850 m depth, at -51°S in the Subantarctic Front with one trap at 3080 m, and at -54°S in the Polar Frontal Zone (PFZ) with traps at 830 and 1580 m. Particle fluxes were high at all the sites (18-32 g/m**2/yr total mass and 0.5-1.4 g organic carbon/m**2/yr at -1000 m, assuming minimal flux outside the sampled summer period). These values are similar to other Southern Ocean results and to the median estimated for the global ocean by Lampitt and Antia [1997], and emphasize that the Southern Ocean exports considerable carbon to the deep sea despite its 'high-nutrient, low chlorophyll' characteristics. The SAZ site was dominated by carbonate (>50% of total mass) and the PFZ site by biogenic silica (>50% of total mass). Both sites exhibited high export in spring and late summer, with an intervening low flux period in December. For the 153 day collection period, particulate organic carbon export was somewhat higher in all the traps in the SAZ (range 0.57-0.84 gC/m**2) than in the PFZ (range 0.31-0.53), with an intermediate value observed at the SAF (0.60). The fraction of surface organic carbon export (estimated from seasonal nutrient depletion, Lourey and Trull [2001]) reaching 1000 m was indistinguishable in the SAZ and PFZ, despite different algal communities.
Resumo:
The spatial and temporal patterns of fog and low clouds along the South-Western African coast are characterized based on an evaluation of Meteosat SEVIRI satellite data. A technique for the detection of fog/low clouds in the region is introduced, and validated using 1 year of CALIOP cloud lidar products, showing reliable performance. The frequency of fog and low cloud in the study area is analyzed by systematic application of the technique to all available Meteosat SEVIRI scenes from 2004 to 2009, for 7:00 UTC and 14:00 UTC. The highest frequencies are encountered in the area around Walvis Bay, with a peak in the summer months. Fog and low clouds clear by 14:00 UTC almost everywhere over land.
Resumo:
Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ~30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (~57-52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)-P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The delta13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene-lower Eocene (~57-52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi delta13C of 0.5 and 1.0? characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ~57 to 52-51 Ma, as also recognized at other locations.
Resumo:
The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.