685 resultados para South Pacific Ocean

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-)environmental studies. The trade winds, extending over 20° to 30° of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of eolian-derived marine sediments in the eastern equatorial and subtropical Pacific (10°N to 25°S) as a reference data set for the interpretation of SE Pacific paleo-dust records. The terrigenous silt and clay fractions of 75 surface sediment samples have been investigated for their grain-size distribution and clay-mineral compositions, respectively, to identify their provenances and transport agents. Dust delivered to the southeast Pacific from the semi- to hyper-arid areas of Peru and Chile is rather fine-grained (4-8 µm) due to low-level transport within the southeast trade winds. Nevertheless, wind is the dominant transport agent and eolian material is the dominant terrigenous component west of the Peru-Chile Trench south of ~ 5°S. Grain-size distributions alone are insufficient to identify the eolian signal in marine sediments due to authigenic particle formation on the sub-oceanic ridges and abundant volcanic glass around the Galapagos Islands. Together with the clay-mineral compositions of the clay fraction, we have identified the dust lobe extending from the coasts of Peru and Chile onto Galapagos Rise as well as across the equator into the doldrums. Illite is a very useful parameter to identify source areas of dust in this smectite-dominated study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m?3 yr1 extrapolated to an annual rate and 7.7 mmol C m?3 yr?1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoscale eddies play a major role in controlling ocean biogeochemistry. By impacting nutrient availability and water column ventilation, they are of critical importance for oceanic primary production. In the eastern tropical South Pacific Ocean off Peru, where a large and persistent oxygen-deficient zone is present, mesoscale processes have been reported to occur frequently. However, investigations into their biological activity are mostly based on model simulations, and direct measurements of carbon and dinitrogen (N2) fixation are scarce. We examined an open-ocean cyclonic eddy and two anticyclonic mode water eddies: a coastal one and an open-ocean one in the waters off Peru along a section at 16°S in austral summer 2012. Molecular data and bioassay incubations point towards a difference between the active diazotrophic communities present in the cyclonic eddy and the anticyclonic mode water eddies. In the cyclonic eddy, highest rates of N2 fixation were measured in surface waters but no N2 fixation signal was detected at intermediate water depths. In contrast, both anticyclonic mode water eddies showed pronounced maxima in N2 fixation below the euphotic zone as evidenced by rate measurements and geochemical data. N2 fixation and carbon (C) fixation were higher in the young coastal mode water eddy compared to the older offshore mode water eddy. A co-occurrence between N2 fixation and biogenic N2, an indicator for N loss, indicated a link between N loss and N2 fixation in the mode water eddies, which was not observed for the cyclonic eddy. The comparison of two consecutive surveys of the coastal mode water eddy in November 2012 and December 2012 also revealed a reduction in N2 and C fixation at intermediate depths along with a reduction in chlorophyll by half, mirroring an aging effect in this eddy. Our data indicate an important role for anticyclonic mode water eddies in stimulating N2 fixation and thus supplying N offshore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (D14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of D14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (DD14C = -1,000 per mil). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.