7 resultados para South Australian newspaper history
em Publishing Network for Geoscientific
Resumo:
The results of experiments in 40Ar/39Ar age dating using fresh basement material from Sites 765 and 766 of Leg 123 of the Ocean Drilling Program are inconsistent and cannot be used to constrain the basement age of the Argo Abyssal Plain in the Indian Ocean. However, a celadonite sample, which was precipitated during a low-temperature alteration event that affected the basement at Site 765, yielded a K-Ar age of 155.3 ±3.4 Ma. Celadonites, which have been dated using Rb-Sr methods for basement in the Atlantic Ocean (Staudigel et al., 1981, doi:10.1016/0012-821X(81)90186-2) and by K-Ar methods for the Troodos Ophiolite (Staudigel et al., 1986, doi:10.1130/0091-7613(1986)14<72:AASAOC>2.0.CO;2), and for sediments from the Pacific Ocean (Peterson et al., 1986, doi:10.2973/dsdp.proc.92.132.1986) yield ages that are up to 15 Ma younger than the age for the formation of basement. Thus, the celadonite age is retained as a reliable minimum age for basement at Site 765. This radiometric age is inconsistent with biostratigraphic ages, which indicate a maximum of late Berriasian (approximately 140 Ma) for Site 765, but is consistent with geophysical interpretations of marine magnetic anomalies and with the early north-south seafloor spreading history of the Argo Abyssal Plain region of the Indian Ocean.
Resumo:
Detailed descriptions of in situ ?Valanginian to Albian Antarctic palynofloras are presented from Weddell Sea claystones with high percentages of organic matter ("black shales") and intercalated volcanic ash layers. The claystones were recovered from two sites (ODP Leg 113, Sites 692 and 693) on the continental margin of Dronning Maud Land. Palynological investigations of these Cretaceous sediments revealed a ?Valanginian-Hauterivian age for the Site 692 sediments and an Aptian-Albian age for Site 693. This paper is focused on the palynomorphs of Site 692. Miospores, dinoflagellate cysts, and acritarchs are listed and compared with early Cretaceous microfloras from the Antarctic Peninsula, Australia, and South America. The dinocyst assemblage of Site 692 seems to be very similar in composition to an assemblage from the South Shetlands (?Valanginian-Hauterivian-Barremian). It also agrees well with associations described from early Early Cretaceous sequences from the Perth Basin, southwestern Australia. According to the Australian miospore zonation schemes, the sporomorph flora from Site 692 belongs to the South Australian Foraminisporis wonthaggiensis Zone (early Valanginian to Hauterivian) or the lower part of the dinocyst Muderongia Superzone (Valanginian to Hauterivian).
Resumo:
Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.
Resumo:
Lithobiostratigraphic data indicate that the double reflectors on the seismic profile through Ocean Drilling Program (ODP) Site 1148 represent two unconformities that coincide, respectively, with the lower/upper Oligocene boundary at ~488 mcd, and Oligocene-Miocene boundary at 460 mcd. Two other unconformities, at ~478 and 472 mcd, respectively, were also identified within the upper Oligocene section. Together they erased a sediment record of about 3 Ma from this locality in a period of very active seafloor spreading. The existence of 32.8 Ma marine sediment at the terminated depth (850 mcd) indicates that the initial breakup of the South China Sea (SCS) was probably during 34-33 Ma, close to the Eocene-Oligocene boundary. High sedimentation rates of 60-115 m/my from the much expanded, N350 m lower Oligocene section resulted from rifting and rapid subsidence between 33 and 29 Ma. The mid-Oligocene unconformity at ~28.5 Ma, which also occurred in many parts of the Indo-West Pacific region, was probably related to a significant uplift of the Himalayan-Tibetan Plateau to the west and the initial collision between Indonesia and Australia in the south. A narrowed Indonesian seaway may have accounted for the late Oligocene warming and chalk deposition in the northern South China Sea including the Site 1148 locality. The unconformities and slumps near the Oligocene-Miocene boundary indicate a very unstable tectonic regime, probably corresponding to changes in the rotation of different land blocks and the seafloor spreading ridge from nearly E-W to NE-SW, as recognized earlier at magnetic Anomaly 7. This 25 Ma event also saw the first New Guinea terrane docking at the northern Australian craton. The low sedimentation rate of ~15 m/my in the early to middle Miocene may correspond to another period of rapid seafloor spreading and rapid widespread subsidence that effectively caused sediment source areas to retreat with a rapidly rising sea level. The isostatic nature of these late Oligocene unconformities and slumps with several major collision-uplift events indicate that the rapid changes in the early evolutionary history of the South China Sea were mainly responding to regional tectonic reconfiguration including the uplift-driven southeast extrusion of the Indochina subcontinent.
Resumo:
Foraminiferal analysis of Miocene to recent strata of the Northwest Shelf of Australia is used to chart West Pacific Warm Pool (WPWP) influence. The assemblage is typified by "larger" foraminifera with ingressions of the Indo-Pacific "smaller" taxa Asterorotalia and Pseudorotalia at around 4 Ma and from 1.6 to 0.8 Ma. A review of recent and fossil biogeography of these taxa suggests their stratigraphic distribution can be used to document WPWP evolution. From 10 to 4.4 Ma a lack of biogeographic connectivity between the Pacific and Indian Ocean suggests Indonesian Throughflow (ITF) restriction. During this period, the collision of Australia and Asia trapped warmer waters in the Pacific, creating a central WPWP biogeographic province from the equator to 26°N. By 3 Ma Indo-Pacific species migrated to Japan with the initiation of the "modern" Kuroshio Current coinciding with the intensification of the North Pacific Gyre and Northern Hemisphere ice sheet expansion. Indo-Pacific taxa migrated to the northwest Australia from 4.4 to 4 Ma possibly because of limited ITF. The absence of Indo-Pacific taxa in northwest Australia indicates possible ITF restriction from 4 to 1.6 Ma. Full northwest Australian biogeographic connectivity with the WPWP from 1.6 to 0.8 Ma suggests an unrestricted stronger ITF (compared to today) and the initiation of the modern Leeuwin Current. The extinction of some Indo-Pacific species in northwest Australia after 0.8 Ma may be related to the effects of large glacial/interglacial oscillations and uplift of the Indonesian Archipelago causing Indonesian seaway restriction.