3 resultados para Sonatas (Harp)
em Publishing Network for Geoscientific
Resumo:
Sub-Arctic marine ecosystems are some of the most productive ecosystems in the world's oceans. The capacity of herbivorous zooplankton, such as Calanus, to biosynthesize and store large amounts of lipids during the short and intense spring bloom is a fundamental adaptation which facilitates the large production in these ecosystems. These energy-rich lipids are rapidly transferred through the food chain to Arctic seals. The fatty acids and stable isotopes from harp seal (Phoca groenlandica) and hooded seal (Cystophora cristata) off East Greenland as well as their potential prey, were analysed. The results were used to describe the lipid dynamics and energy transfer in parts of the East Greenland ecosystem. Even if the two seal species showed considerable overlap in diet and occurred at relatively similar trophic levels, the fatty acid profiles indicated that the bases of the food chains of harp and hooded seals were different. The fatty acids of harp seals originate from diatom-based food chain, whereas the fatty acids of hooded seals originate from dinoflagellate and the prymnesiophyte Phaeocystis pouchetii-based food chain. Stable isotope analyses showed that both species are true carnivores on the top of their food chains, with hooded seal being slightly higher on the food chain than harp seal.
Resumo:
Lower jaws (containing the teeth), eyes, and skin samples were collected from harp seals (Pagophilus groenlandicus) in the southeastern Barents Sea for the purpose of comparing age estimates obtained by 3 different methods, the traditional technique of counting growth layer groups (GLGs) in teeth and 2 novel approaches, aspartic acid racemization (AAR) in eye lens nuclei and telomere sequence analyses as a proxy for telomere length. A significant correlation between age estimates obtained using GLGs and AAR was found, whereas no correlation was found between GLGs and telomere length. An AAR rate (k Asp) of 0.00130/year ± 0.00005 SE and a D-enantiomer to L-enantiomer ratio at birth (D/L 0 value) of 0.01933 ± 0.00048 SE were estimated by regression of D/L ratios against GLG ages from 25 animals (12 selected teeth that had high readability and 13 known-aged animals). AAR could prove to be useful, particularly for ageing older animals in species such as harp seals where difficulties in counting GLGs tend to increase with age. Age estimation by telomere length did not show any correlation with GLG ages and is not recommended for harp seals.
Resumo:
The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.