22 resultados para Solute
em Publishing Network for Geoscientific
Resumo:
Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air-ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, similar research has not identified solute locations in laboratory samples, nor the possible factors controlling solute segregation. To address this, we examined solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or Rose Bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (~2 µm). Freezing solutions in plastic versus glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with Rose Bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.
Resumo:
Ostracode species assemblages and stable oxygen and carbon isotope ratios of living and recent ostracodes, together with delta18O and delta13C_DIC values of host water samples, provide a first data set that characterizes a wide range of modern aquatic environments in the Laguna Cari-Laufquen (41°S, 68 - 69°W) and the Lago Cardiel area (48 - 49°S, 70 - 71°W) in Patagonia, Argentina. This data set will ultimately be used to interpret and calibrate data acquired from lake sediment cores with the goal of reconstructing past climate. Species assemblages and isotope values can be assigned to three groups; (1) springs, seeps and streams, (2) permanent ponds and lakes, and (3) ephemeral ponds and lakes. Springs, seeps and streams are characterized by Darwinula sp., Heterocypris incongruens, Eucypris fontana, Amphicypris nobilis and Ilyocypris ramirezi. Ostracode and water isotope values range between -13 and -5 per mil for oxygen, and between -15 and -3 per mil for carbon. They are the most negative of the entire sample set, reflecting ground water input with little or no evaporative enrichment. Limnocythere patagonica, Eucypris labyrinthica, Limnocythere sp. and Eucypris aff. fontana are typical species of permanent ponds and lakes. Isotope values indicate high degree of evaporation of lake waters relative to feeder springs and streams and range between -7 and +5 per mil for oxygen, and -5 and +4 per mil for carbon. Limnocythere rionegroensis is the dominant species in ephemeral ponds and lakes. These systems display the most enriched isotope values in both ostracodes and host waters, extending from -5 to +7 per mil for oxygen, and from -5 to +6 per mil for carbon. Living ostracodes show a positive offset from equilibrium values of up to 2 per mil for oxygen. Carbon-isotope values are up to 6? more negative than equilibrium values in highly productive pools. Comparison of ostracode and host water isotope signals permits assessment of the life span of the aquatic environments. Valves from dead ostracodes collected from ephemeral ponds and lakes show a wide scatter with each sample providing a snapshot of the seasonal history of the host water. The presence of the stream species Ilyocypris ramirezi and a wide range of ostracode isotope values suggest that ephemeral ponds and lakes are fed by streams during spring run-off and seasonally dry. A temporary character is also indicated by Heterocypris incongruens, a drought-resistant species that occupies most springs and seeps. In addition, Limnocythere rionegroensis has adjusted its reproduction strategies to its environment. Whereas only females were collected in fresh host waters, males were found in ephemeral ponds and lakes with higher solute content. Sexual reproduction seems to be the more successful reproduction strategy in high and variable salinities and seasonal droughts. The temporary character of the aquatic environments shows that the availability of meteoric water controls the life span of host waters and underlines the sensitivity of the area to changes in precipitation.
Resumo:
Leg 119 of the Ocean Drilling Program (ODP) provided the first opportunity to study the interstitial-water chemistry of the eastern Antarctic continental margin. Five sites were cored in a northwest-southeast transect of Prydz Bay that extended from the top of the continental slope to within 30 km of the coastline. Geological studies of the cores reveal a continental margin that has evolved through terrestrial, glacial, and glacial-marine environments. Chemical and stable isotopic analyses of the interstitial-waters were performed to determine the types of depositional environments and the diagenetic and hydrologic processes that are operating in this unusual marine environment. Highly compacted glacial sediments provide an effective barrier to the vertical diffusion of interstitial-water solutes. Meteoric water from the Antarctic continent appears to be flowing into Prydz Bay sediments through the sequence of terrestrial sediments that lie underneath the glacial sediments. The large amounts of erosion associated with glacial advances appear to have had the effect of limiting the amount of marine organic matter that is incorporated into the sediments on the continental shelf. Although all of the sites cored in Prydz Bay exhibit depletions in dissolved sulfate with increasing depth, the greatest bacterial activity is associated with a thin layer of diatom ooze that coats the seafloor of the inner bay. Results of alkalinity modeling, thermodynamic calculations, and strontium analyses indicate that (1) ocean bottom waters seaward of Site 740 are undersaturated with respect to both calcite and aragonite, (2) interstitial waters at each site become saturated or supersaturated with respect to calcite and aragonite with increasing depth, (3) precipitation of calcium carbonate reduces the alkalinity of the pore waters with increasing depth, and (4) recrystallization of aragonite to calcite accounts for 24% of the pore-water strontium. Weathering of unstable terrestrial debris and cation exchange between clay minerals and pore fluids are the most probable chemical processes affecting interstitial water cation gradients.
Resumo:
This study investigated CO2 degassing and related carbon isotope fractionation effects in the Wiesent River that drains a catchment in the karst terrain of the Fraconian Alb, Southern Germany. The river was investigated by physico-chemical and stable isotope analyses of water and dissolved inorganic carbon during all seasons in 2010 along 65 km long downstream transects between source and mouth. This data set contains the results of field and solute parameters (temperature, conductivity, pH, total alkalinity, total CO2, and pCO2) and stable isotope analyses (d2H-H2O, d18O-H2O, d13C-DIC) for the Wiesent River and major tributaries.
Resumo:
Submarine brine lakes feature sharp and persistent concentration gradients between seawater and brine, though these should be smoothed out by free diffusion in open ocean settings. The anoxic Urania basin of the Eastern Mediterranean contains an ultra sulfidic, hypersaline brine of Messinian origin above a thick layer of suspended sediments. With a dual modeling approach we reconstruct its contemporary stratification by geochemical solute transport fundamentals, and show that thermal convection is required to maintain mixing in the brine and mud layer. The origin of the Urania basin stratification was dated to 1650 years before present, which may be linked to a major earthquake in the region. The persistence of the chemoclines may be key to the development of diverse and specialized microbial communities. Ongoing thermal convection in the fluid mud layer may have important, yet unresolved consequences for sedimentological and geochemical processes, also in similar environments.
Resumo:
The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.
Resumo:
Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO2 levels has been well documented. This study looks into the role of several candidate Ca2+, H+ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca2+ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO3- transporter belonging to the solute carrier 4 (SLC4) family, a Ca2+/H+ exchanger belonging to the CAX family of exchangers and a vacuolar H+-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented.