9 resultados para Soil proximal sensing
em Publishing Network for Geoscientific
Resumo:
Extreme winter warming events in the sub-Arctic have caused considerable vegetation damage due to rapid changes in temperature and loss of snow cover. The frequency of extreme weather is expected to increase due to climate change thereby increasing the potential for recurring vegetation damage in Arctic regions. Here we present data on vegetation recovery from one such natural event and multiple experimental simulations in the sub-Arctic using remote sensing, handheld passive proximal sensors and ground surveys. Normalized difference vegetation index (NDVI) recovered fast (2 years), from the 26% decline following one natural extreme winter warming event. Recovery was associated with declines in dead Empetrum nigrum (dominant dwarf shrub) from ground surveys. However, E. nigrum healthy leaf NDVI was also reduced (16%) following this winter warming event in experimental plots (both control and treatments), suggesting that non-obvious plant damage (i.e., physiological stress) had occurred in addition to the dead E. nigrum shoots that was considered responsible for the regional 26% NDVI decline. Plot and leaf level NDVI provided useful additional information that could not be obtained from vegetation surveys and regional remote sensing (MODIS) alone. The major damage of an extreme winter warming event appears to be relatively transitory. However, potential knock-on effects on higher trophic levels (e.g., rodents, reindeer, and bear) could be unpredictable and large. Repeated warming events year after year, which can be expected under winter climate warming, could result in damage that may take much longer to recover.
Resumo:
The paper presents first results of a pan-boreal scale land cover harmonization and classification. A methodology is presented that combines global and regional vegetation datasets to extract percentage cover information for different vegetation physiognomy and barren for the pan-arctic region within the ESA Data User Element Permafrost. Based on the legend description of each land cover product the datasets are harmonized into four LCCS (Land Cover Classification System) classifiers which are linked to the MODIS Vegetation Continuous Field (VCF) product. Harmonized land cover and Vegetation Continuous Fields products are combined to derive a best estimate of percentage cover information for trees, shrubs, herbaceous and barren areas for Russia. Future work will concentrate on the expansion of the developed methodology to the pan-arctic scale. Since the vegetation builds an isolation layer, which protects the permafrost from heat and cold temperatures, a degradation of this layer due to fire strongly influences the frozen conditions in the soil. Fire is an important disturbance factor which affects vast processes and dynamics in ecosystems (e.g. biomass, biodiversity, hydrology, etc.). Especially in North Eurasia the fire occupancy has dramatically increased in the last 50 years and has doubled in the 1990s with respect to the last five decades. A comparison of global and regional fire products has shown discrepancies between the amounts of burn scars detected by different algorithms and satellite data.
Resumo:
The overarching goal of the Yamal portion of the Greening of the Arctic project is to examine how the terrain and anthropogenic factors of reindeer herding and resource development combined with the climate variations on the Yamal Peninsula affect the spatial and temporal patterns of vegetation change and how these changes are in turn affecting traditional herding of the indigenous people of the region. The purpose of the expeditions was to collect groundobservations in support of remote sensing studies at four locations along a transect that traverses all the major bioclimate subzones of the Yamal Peninsula. This data report is a summary of information collected during the 2007 and 2008 expeditions. It includes all the information from the 2008 data report (Walker et al. 2008) plus new information collected at Kharasavey in Aug 2008. The locations included in this report are Nadym (northern taiga subzone), Laborovaya (southern tundra = subzone E of the Circumpolar Arctic Vegetation Map (CAVM), Vaskiny Dachi (southern typical tundra = subzone D), and Kharasavey (northern typical tundra = subzone C). Another expedition is planned for summer 2009 to the northernmost site at Belyy Ostrov (Arctic tundra = subzone B). Data are reported from 10 study sites - 2 at Nadym, 2 at Laborovaya, and 3 at Vaskiny Dachi and 3 at Kharasavey. The sites are representative of the zonal soils and vegetation, but also include variation related to substrate (clayey vs. sandy soils). Most of the information was collected along 5 transects at each sample site, 5 permanent vegetation study plots, and 1-2 soil pits at each site. The expedition also established soil and permafrost monitoring sites at each location. This data report includes: (1) background for the project, (2) general descriptions and photographs of each locality and sample site, (3) maps of the sites, study plots, and transects at each location, (4) summary of sampling methods used, (5) tabular summaries of the vegetation data (species lists, estimates of cover abundance for each species within vegetation plots, measured percent ground cover of species along transects, site factors for each study plot), (6) summaries of the Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) along each transect, (7) soil descriptions and photos of the soil pits at each study site, (8) summaries of thaw measurements along each transect, and (9) contact information for each of the participants. One of the primary objectives was to provide the Russian partners with full documentation of the methods so that Russian observers in future years could repeat the observations independently.
Resumo:
This dataset provides scaling information applicable to satellite derived coarse resolution surface soil moisture datasets following the approach by Wagner et al. (2008). It is based on ENVISAT ASAR data and can be utilized to apply the Metop ASCAT dataset (25 km) for local studies as well as to assess the representativeness of in-situ measurement sites and thus their potential for upscaling. The approach based on temporal stability (Wagner et al. 2008) consists of the assessment of the validity of the coarse resolution datasets at medium resolution (1 km, product is the so called 'scaling layer').