5 resultados para Smo
em Publishing Network for Geoscientific
Resumo:
This paper presents results of investigations of unusual carbonate formations found in bottom sediments of the South China Sea shelf. These sediments were sampled from a deep fracture found by geophysical methods. According to gas-geochemical data there are high concentrations of methane, hydrogen and carbon dioxide in bottom waters of this area. The carbonate formations were defined as calcium siderite or siderodot by roentgenostructural, microprobe, atomic absorption, and thermal analyses, asawellas infrared spectroscopy. Formation of this mineral results from carbon dioxide and methane flows through bottom sediments.
Resumo:
Geochemical records are presented for five sediment cores from basins on the continental shelf of Mac. Robertson Land, East Antarctica. The cores contain 2-4 m thick sequences of hemipelagic, siliceous mud and ooze (SMO) deposited under seasonally open marine conditions. The inner and middle shelf SMO sequences are massive dark olive green material, whereas the outer shelf SMO sequences are dark olive material interspersed with light olive green layers ~1-10 cm thick. The biogenic material is dominated by marine diatoms including Fragilariopsis curta, Fragilariopsis cylindrus, and Chaetoceros spp. in the dark-colored SMO and Corethron criophilum in the light-colored layers. Radiocarbon dates suggest that the cores provide continuous accumulation records extending from < 1 kyr before present (B.P.) back as far as 4-15 kyr B.P., with estimated accumulation rates of 0.07-5 mm/yr. The three core records from the middle and outer shelf suggest six episodes of increased accumulation of biogenic material at ~5.5 kyr B.P. (all three cores), 1, 2, and 6.2 kyr B.P. (two of the three cores), and 3.8 and 10.8 kyr B.P. (one core), most of which coincide with Corethron layers. We interpret these features as the result of enhanced diatom production over the outer shelf, possibly related to climatic warm periods. The absence of such features in the inner shelf core records is thought to reflect a relatively constant level of seasonal diatom production in adjacent waters maintained by a coastal polynya.