3 resultados para Simultaneous Similarity

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silicoflagellate and ebridian assemblages in early middle Eocene Arctic cores obtained by IODP Expedition 302 (ACEX) were studied in order to decipher the paleoceanography of the upper water column. The assemblages in Lithologic Unit 2 (49.7-45.1 Ma), one of the biosiliceous intervals, were usually endemic as compared to the assemblages that occurred outside of the Arctic Ocean. The presence of these endemic assemblages is probably due to a unique environmental setting, controlled by the degree of mixing between the low-salinity Arctic waters and relatively high salinity waters supplied from outside the Arctic Ocean, such as the Atlantic and possibly the Western Siberian Sea. Using the basin-to-basin fractionation model, the early middle Eocene Arctic Ocean corresponds to an estuarine circulation type, which includes the modern-day Black Sea. The abundant down-core occurrence of ebridians strongly suggests the past presence of low-salinity waters, and may indicate that low oxygen concentrations prevailed in the euphotic layer, on the basis of the ecology of the modern ebridian Hermesinum adriaticum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A land based mesocosm experiment focusing on the study of the simultaneous impact of warming and acidification on the planktonic food web of the Eastern Mediterranean took place in August-September 2013 at the mesocosm facilities of HCMR in Crete (CRETACOSMOS). Two different pCO2 (present day and predicted for year 2100) were applied in triplicate mesocosms of 3 m**3. This was tested in two different temperatures (ambient seawater T and ambient T plus 3°C). Twelve mesocosms in total were incubated in two large concrete tanks. Temperature was controlled by sophisticated, automated systems. A large variety of chemical, biological and biochemical variables were studied, including salinity, temperature, light and alkalinity measurements, inorganic and organic, particulate and dissolved, nutrient analyses, biological stock (Chla concentration, enumeration and community composition of microbial, phyto- and zooplankton organisms) and rate (primary, bacterial, viral production, copepod egg production, zooplankton grazing, N2 fixation, P uptake) measurements, bacterial DNA extraction and phytoplankton transcriptomics, calcifiers analyses. Twenty three scientists from 6 Institutes and 5 countries participated in this experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen equilibrium curves have been widely used to understand oxygen transport in numerous organisms. A major challenge has been to monitor oxygen binding characteristics and concomitant pH changes as they occur in vivo, in limited sample volumes. Here we report a technique allowing highly resolved and simultaneous monitoring of pH and blood pigment saturation in minute blood volumes. We equipped a gas diffusion chamber with a broad range fibre optic spectrophotometer and a micro-pH optode and recorded changes of pigment oxygenation along PO2 and pH gradients to test the setup. Oxygen binding parameters derived from measurements in only 15 µl of haemolymph from the cephalopod Octopus vulgaris showed low instrumental error (0.93%) and good agreement with published data. Broad range spectra, each resolving 2048 data points, provided detailed insight into the complex absorbance characteristics of diverse blood types. After consideration of photobleaching and intrinsic fluorescence, pH optodes yielded accurate recordings and resolved a sigmoidal shift of 0.03 pH units in response to changing PO2 from 0-21 kPa. Highly resolved continuous recordings along pH gradients conformed to stepwise measurements at low rates of pH changes. In this study we showed that a diffusion chamber upgraded with a broad range spectrophotometer and an optical pH sensor accurately characterizes oxygen binding with minimal sample consumption and manipulation. We conclude that the modified diffusion chamber is highly suitable for experimental biologists who demand high flexibility, detailed insight into oxygen binding as well as experimental and biological accuracy combined in a single set up.