26 resultados para Simetria discreta
em Publishing Network for Geoscientific
Resumo:
Benthic foraminifers of the Coniacian-Santonian through the Paleocene were recovered from a continuous pelagic carbonate section from Hole 516F on the Rio Grande Rise. Sixty-five genera and 153 species have been identified, most of which have been reported from other localities. Bathyal depths are reflected in the benthic assemblages dominated by gavelinellids (Gavelinella beccariiformis, G. velascoensis), Nuttallides truempyi, and various gyroidinids and buliminids. Rapid subsidence during the Coniacian-Santonian from nearshore to upper to middle bathyal depths was followed by much reduced subsidence, with the Campanian-Paleocene interval accumulating at middle bathyal to lower bathyal depths. A census study based on detailed sampling reveals major changes in benthic faunal composition at the Cretaceous/Tertiary boundary transition. It was a time of rapid turnover, with the extinctions of numerous species and the introduction of many new species. Overall, species diversity decreases about 20%, and approximately one-third of latest Maestrichtian species do not survive to the end of the Cretaceous. This shift indicates a significant environmental change in the deep sea, the precise nature of which is not apparent from the foraminifers or their enclosing sediments.
Resumo:
Fifty-nine samples from the basal 110 m of DSDP Hole 612 (United States Atlantic Margin) were analyzed for palynomorph content. In total, 84 species and subspecies of dinoflagellate cysts were recorded which, on comparison with published data and shipboard analyses, indicate a Campanian to Maestrichtian age for this part of the succession. The Campanian/Maestrichtian contact is taken to occur in the upper part of Core 612-69.
Resumo:
Taxonomic composition and structure of assemblages of the present-day benthic Foraminifera in the Kara Sea has been studied on the base of 37 samples of surface sediments. Three assemblages have been distinguished by composition of dominant species. The assemblage Cribrostomoides subglobosus-Tritaxis nana with prevalence of agglutinating forms, typical for abyssal areas of the World Ocean, occurs in brown oozes in the deep western part of the sea at depths 70-375 m under conditions of considerable bottom stratification. The assemblage Elphidium clavatum-Cassidulina reniforme consists predominantly of species with calcareous shells and is characterized by a wide range of species; this assemblage occurs in the eastern part of the sea at depths 30-90 m in a well-aerated area. Species typical for sublittoral areas of polar regions are dominant. The assemblage Elphidium clavatum-Haynesina orbiculare occupies the littoral estuarine part of the sea. This assemblage is poor in species and not abundant, and it occurs under influence of freshened water masses undersaturated with dissolved carbonaceous matter.
Resumo:
At Ocean Drilling Program Hole 748C in the Southern Indian Ocean, a total of 171 Late Cretaceous dinoflagellate taxa were encountered in 38 productive samples from Cores 120-748C-27R through 120-748C-62R (407-740 mbsf). Four provisional dinoflagellate assemblage zones and five subzones were recognized based on the character of the dinoflagellate flora and the first/last occurrences of some key species. Isabelidinium korojonense and Nelsoniella aceras occur in Zone A together with Oligosphaeridium pulcherrimum and Trithyrodinium suspect urn. Zone B was delineated by the total range of Odontochitina cribropoda. Zone C was separated from Zone B by the presence of Satyrodinium haumuriense, and Zone D is dominated by new taxa. The dinocyst assemblages bear a strong affinity to Australian assemblages. Paleoenvironmental interpretations based mainly on dinocysts suggest that during the ?Santonian-Campanian to the Maestrichtian this portion of the Kerguelen Plateau was a shallow submerged plateau, similar to nearshore to offshore to upper slope environments with water depths of tens to hundreds of meters, but isolated from the major continents of the Southern Hemisphere. Starting perhaps in the late Cenomanian (Mohr and Gee, 1992, doi:10.2973/odp.proc.sr.120.196.1992), the Late Cretaceous transgression over the plateau reached its maximum during the late Campanian. The plateau may have been exposed above sea level and subjected to weathering during the latest Maestrichtian. The studied dinocyst assemblages characterized by species of Amphidiadema, Nelsoniella, Satyrodinium, and Xenikoon together with abundant Chatangiella (the large-size species) and Isabelidinium suggest that a South Indian Province (tentatively named the Helby suite) may have existed during the Campanian-Maestrichtian in comparison with the other four provinces of Lentin and Williams. One new genus, three new species, and two new subspecies of dinocysts are described.
Resumo:
Lower Cretaceous and Jurassic sediments from Ocean Drilling Program Leg 129 (Sites 800, 801, and 802) and Deep Sea Drilling Project Sites 167, 195, 196, and 463 were analyzed for palynomorphs. In contrast to Atlantic occurrences, all Cretaceous pelagic sediments at these sites in the Pacific are barren of preserved palynomorphs. This absence of palynomorphs appears to be independent of facies, sedimentation rate, paleodepth, and paleolatitude. Except for one sample, the dinocyst-bearing sediments also contain spores and pollen grains. The only palynomorphs observed were in redeposited material having sources near former emergent seamounts. Among the dinoflagellate cysts at Site 802, Dingodinium cerviculum, Odontochitina operculata, Canninginopsis colliveri, and Oligosphaeridium complex are the most important species. Based on the presence of these species and their known biostratigraphic ranges, this basal interval of Site 802 is considered to be Aptian/earliest Albian in age. The lack of dinocysts within the Pacific pelagic sediments may be the result of ubiquitous oxygenated bottom waters throughout the Cretaceous or may indicate that open-marine dinoflagellate populations in this ocean did not produce cysts.
Resumo:
The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the end-Permian extinction and biotic recovery in south China. Guandao section is continuous from the Permian-Triassic boundary to the Upper Triassic.Conodonts enable broad delineation of stage and substage boundaries and calibration of foraminifer biostratigraphy as follows. Changhsingian- Griesbachian: first Hindeodus parvus, and first appearance of foraminifers Postcladella kalhori and Earlandia sp. Griesbachian-Dienerian: first Neospathodus dieneri, and last appearance of foraminifer P. grandis. Dienerian-Smithian: first Novispathodus waageni and late Dienerian first appearance of foraminifer Hoyenella ex gr. sinensis. Smithian-Spathian: first Nv? crassatus and last appearance of foraminifers Arenovidalina n. sp. and Glomospirella cf. vulgaris. Spathian-Aegean: first Chiosella timorensis and first appearance of foraminifer Meandrospira dinarica. Aegean-Bithynian: first Nicoraella germanica and first appearance of foraminifer Pilammina densa. Bithynian-Pelsonian: after last Neogondolella regalis, prior to first Paragondolella bulgarica and first appearance of foraminifer Aulotortus eotriasicus. Pelsonian-Illyrian: first Pg. excelsa and last appearance of foraminifers Meandrospira ? deformata and Pilamminella grandis. Illyrian-Fassanian: first Budurovignathus truempyi, and first appearance of foraminifers Abriolina mediterranea and Paleolituonella meridionalis. Fassanian-Longobardian: first Bv. mungoensis and last appearance of foraminifer A. mediterranea. Longobardian-Cordevolian: first Quadralella polygnathiformis and last appearance of foraminifers Turriglomina mesotriasica and Endotriadella wirzi. The section contains primary magnetic signature with frequent reversals occurring around the Permian-Triassic, Olenekian-Anisian, and Anisian-Ladinian boundaries. Predominantly normal polarity occurs in the lower Smithian, Bithynian, and Longobardian-Cordevolian. Predominantly reversed polarity occurs in the upper Griesbachian, Induan-Olenekian, Pelsonian and lower Illyrian. Reversals match well with the GPTS. Large amplitude carbon isotope excursions, attaining values as low as -2.9 per mil d13C and high as +5.7 per mil d13C, characterize the Lower Triassic and basal Anisian. Values stabilize around +2 per mil d13C through the Anisian to Carnian. Similar signatures have been reported globally. Magnetic susceptibility and synthetic gamma ray logs show large fluctuations in the Lower Triassic and an overall decline in magnitude of fluctuation through the Middle and Upper Triassic. The largest spikes in magnetic susceptibility and gamma ray, indicating greater terrestrial lithogenic flux, correspond to positive d13C excursions. Several volcanic ash horizons occur in the Lower Triassic and Olenekian-Anisian boundary. High resolution U-Pb analysis of zircons provide a robust age of 247.2 Ma for the Olenekian-Anisian boundary.
Resumo:
In the late Pliocene-middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal-abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20-70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction? In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene-early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene-Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle-late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene-early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene-middle Pleistocene. Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.
Resumo:
The Albian-Cenomanian sediments in Holes 627B and 635B contain diverse dinoflagellate-cyst assemblages, which show affinities with coeval assemblages from offshore Morocco and northwest Europe. A total of 34 samples were analyzed from the shallow-water platform sediments and neritic marly chalk of Hole 627B and from the argillaceous chalk and limestone of Hole 635B. Dinoflagellate cysts indicate that the top of the shallow-water platform drilled at Hole 627B must be attributed to the late Albian. Dinocysts also date the drowning of the carbonate platform of the Blake Plateau. This drowning started in the latest Albian (Vraconian) and continued into the Cenomanian. The site area changed from an inner to intermediate or outer(?) neritic environment. The area around Hole 635B from the late Albian appears to have been situated in a deeper environment than the area around Hole 627B during the same period. The new dinoflagellate-cyst species Compositosphaeridiuml bahamaensis n. sp., Maghrebinia breviornata n. sp., and Subtilisphaeral habibi n. sp. are described, and Pervosphaeridium truncatum is emended. Additional taxonomic remarks about other species are included.