2 resultados para Shoots proliferation
em Publishing Network for Geoscientific
Resumo:
Experimental observations on pathways of water movement are discussed in relation to anatomical and micromorphological features of five moss species from Signy Island, South Orkney Islands. Significant internal uptake of water was recorded only in the mesic species Polytrichum alpinum (internal=>60% of total) and Bartramia patens (internal=c.30% of total), in experiments in which uptake by cut shoots was compared in individuals with the external pathway blocked, and others with both external and internal pathways open. Internal uptake maintained shoot water content close to full turgor in P. alpinun and at 30% of full tugor in B. patens, whereas water content fell to 12-15% dry wt. in the lithophytes Andreaea gainii and Schistidium antarctici and in the mesic/hydric species Drepanocladus uncinatus, with the external pathway blocked. Where both pathways were open water uptake from below maintained water content at or above full turgor in shoots of all five species. External water uptake by capillarity occurred most rapidly in the lithophytes, and was slower in initially air-dry than in hydrated shoots of the other species. The spreading limbs of leaves in B. patens and P. alpinum are water-repellent, as are the bright green leaves in the apical 1-2 mm of dry shoots of the lithophytes. A central strand of hydroids is well-developed only in B. patens and P. alpinum. These two species have deposits of surface wax on parts of the leaves, and surface wax also occurs on the green apical leaves in some specimens of S. antarcticum and other lithophytes from Signy Island.
Resumo:
Data contain source data for Figure 5c from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Retrovirally transduced CFU-E cells were incubated with increasing Epo concentrations for 14 h and proliferation was measured by [3H]-thymidine incorporation.