4 resultados para Shear Deformation Localization
em Publishing Network for Geoscientific
Resumo:
The Sør Rondane Mountains (SRM) in eastern Dronning Maud Land (DML) are located in an area, where two apparent Pan-African (650-520 Ma) orogenic mobile belts appear to intersect, the East African-Antarctic Orogen and the Kuunga Orogen. Hence, a better understanding of the tectonic structure of the Sør Rondane region is an important key for unravelling the complex geodynamic evolution of the eastern DML and adjacent regions of East Antarctica during the Late Neoproterozoic/Early Palaeozoic amalgamation of Gondwana. The SRM were recently (2011-2012) aerogeophysically investigated with a 5 km flight line spacing, covering a total area of ~140,000 km². The aeromagnetic data are correlated with ground-based magnetic susceptibility measurements and geological field data and allow to project tectonic terranes and individual structures into ice-covered areas. Magnetic anomalies and basement foliation trends are collinear in areas dominated by simple shear deformation, whereas an area of large-scale refolding correlates with a subdued small-scale broken magnetic anomaly pattern. The latter area can be regarded as a distinct tectonic domain, the central Sør Rondane corridor. It magnetically separates the SRM into an eastern, a central, and a western portion. This subdivision is presumably related to late Pan-African extensional tectonics and suggests that such a tectonic regime may play a larger role than previously assumed. Voluminous late Pan-African granitoids, which are mainly undeformed, correlate with positive magnetic anomalies between +30 and +80 nT, while a strong magnetic high (+680 nT) near the granitic intrusion at Dufekfjellet is caused by a highly magnetised enigmatic body. The recently discovered prominent magnetic anomaly province of southeastern DML continues into the southern part of the Sør Rondane region, where only a few outcrops are exposed. Findings at these westernmost nunataks of the SRM indicate that the subdued magnetic anomaly pattern of this southeastern DML province is most likely caused by the predominance of metasedimentary rocks of yet unknown age.
Resumo:
The shape and morphology of the northern Barbados Ridge complex is largely controlled by the sediment yield and failure behavior in response to high lateral loads imposed by convergence. Loads in excess of sediment yield strength result in nonrecoverable deformations within the wedge, and failure strength acts as an upper limit beyond which stresses are released through thrust faults. Relatively high loading rates lead to delayed consolidation and in-situ pore pressures greater than hydrostatic. The sediment yield and failure behavior is described for any stress path by a generalized constitutive model. A yield locus delineates the onset of plastic (non-recoverable) deformation, as defined from the isotropic and anisotropic consolidation responses of high-quality 38-mm triaxial specimens; a failure envelope was obtained by shearing the same specimens in both triaxial compression and extension. The yield locus is shown to be rotated into extension space and is centered about a K-line greater than unity, suggesting that the in-situ major principal stress has rotated into the horizontal plane, and that the sediment wedge is being subjected to extensional effective stress paths.
Resumo:
Sediment deformation features in CRP-2/2A were described during normal logging procedures and from core-scan images. In this paper the origin of soft-sediment folding, contorted bedding, microfaulting, clastic dykes, shear zones and intraformational breccias is discussed. The features have a stratigraphic distribution related to major unconformities and sequence boundaries. Hypotheses for the origins of sediment deformation include hydrofracturing, subglacial shearing, slumping, and gas hydrate formation. Shear zones, microfaults, clastic dykes and contorted bedding within rapidly deposited sediments, suggest that slumping in an ice-distal environment occurred in the early Oligocene. A till wedge beneath a diamictite at 364 mbsf the mid-Oligocene section represents the oldest evidence of grounded ice in CRP-2/2A. Shear zones with a subglacial origin in the early late Oligocene and early Miocene sections of the core are evidence of further grounding events. The interpretation of sediment deformation in CRP-2/2A is compared to other Antarctic stratigraphic records and global eustatic change between the late Eocenel/early Oligocene and the middle Miocene.