2 resultados para Separation of variables

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Good faunal preservation in the upper part of the Planorotatites pseudomenardii Zone at Deep Sea Drilling Project Site 605, northwestern Atlantic, allows a biometric analysis of the upper Paleocene planktonic foraminiferal species Planorotatites pseudomenardii (Belli), a keeled species that probably developed from a middle Paleocene unkeeled Planorotalites form. Multivariate analysis shows a consistent separation of all Planorotatites specimens into two groups, which are differentiated by the presence or absence of a complete keel; other variables are only of minor importance. The keeled group coincides with P. pseudomenardii. We recognize only one unkeeled species, Planorotalites chapmani (Parr), with Planorotalites ehrenbergi (Bolli), Planorotalites imitata (Subbotina), Planorotalites planoconica (Subbotina), Planorotalites troelseni (Loeblich and Tappan), and Planorotalites hausbergensis (Gohrbrandt) as junior synonyms. P. chapmani ranges from the middle Paleocene to at least the top of the upper Paleocene. The morphology of P. pseudomenardii does not change significantly, and although the frequency of Planorotalites is variable, the proportion of P. pseudomenardii to all Planorotalites varies only slightly around 65% in the upper two-thirds of its range at Site 605. However, in the top 1.5 m of its range the proportion of P. pseudomenardii decreases; in the same section, all Planorotalites specimens show a reduction in the size of their tests, suggesting that a temporary change in environmental conditions led to the exit of P. pseudomenardii\ in Magnetozone C24R at Site 605-apparently higher than expected from current standard zonations. Unkeeled Planorotalites, in contrast to R. pseudomenardii, persisted and regained normal size. The entry of P. pseudomenardii at Site 605 cannot be described in the same detail because of low frequencies of Planorotalites specimens and an erratic distribution of P. pseudomenardii in the lower part of its range. Many of the washed residues of the samples from these sediments are dominated by radiolarians, and the poorly preserved foraminiferal faunas may have abundant benthics, indicating carbonate dissolution. The initially low frequencies of P pseudomenardii relative to the unkeeled Planorotalites show a strong negative correlation with the total amount of radiolarians per sample and could be the result of preferential preservation, as well as of the same environmental conditions that caused the abundance of radiolarians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zooplankton was studied on eight stations in the marginal ice zone (MIZ) of the Barents Sea, in May 1999, along two transects across the ice edge. On each station, physical background measurements and zooplankton samples were taken every 6 h over a 24 h period at five discrete depth intervals. Cluster analysis revealed separation of open water stations from all ice stations as well as high similarity level among replicates belonging to particular station. Based on five replicates per station, analysis of variance (ANOVA) confirmed significant differences (P < 0.05) in abundances of the main mesozooplankton taxa among stations. Relations between the zooplankton community and environmental parameters were established using redundancy analysis (CANOCO). In total, 55% of mesozooplankton variability within studied area was explained by eight variables with significant conditional effects: depth stratum, fluorescence, temperature, salinity, bottom depth, latitude, bloom situation, and ice concentration. GLM models supported supposition about clear and negative relationship between concentration of Oithona similis, and overall mesozooplankton diversity The analyses showed a dynamic relationship between mesozooplankton distribution and hydrological conditions on short-term scale. Furthermore, our study demonstrated that variability in the physical environment of dynamic MIZ of the Barents Sea has measurable effect on the Arctic pelagic ecosystem.