2 resultados para Sense and signification
em Publishing Network for Geoscientific
Resumo:
A paleomagnetic study was made on the deep-marine sediments and volcanic rocks drilled by Ocean Drilling Program Leg 126 in the Izu-Bonin forearc region (Sites 787, 792, and 793). This study evaluates the sense and amount of the tectonic drift and rotation associated with the evolution of the Philippine Sea Plate and the Izu-Bonin Arc. Alternating-field and thermal demagnetization experiments show that most of the samples have stable remanence and are suitable for paleomagnetic studies. Paleomagnetic declinations were recovered by two methods of core orientation, one of which uses a secondary viscous magnetization vector of each specimen as an orientation standard, and the other of which is based on the data of downhole microresistivity measurement obtained by using a formation microscanner. Oligocene to early Miocene samples show 10° to 14° shallower paleolatitudes than those of the present. Middle Miocene to early Oligocene samples show progressive clockwise deflections (up to ~80°) in declination with time. These results suggest large northward drift and clockwise rotation of the Izu-Bonin forearc region since early Oligocene time. Considering previous paleomagnetic results from the other regions in the Philippine Sea, this motion may reflect large clockwise rotation of the whole Philippine Sea Plate over the past 40 m.y.
Resumo:
The proposed origins for the Enriched Mantle I component are many and various and some require an arbitrary addition of an exotic component, be it pure sediment or an enriched melt from the subcontinental lithosphere. With Pitcairn, Walvis Ridge is the 'type-locality' for the Enriched Mantle I (EMI) component. We analyzed basalts from DSDP Site 525A, Site 527 and Site 528 on the Walvis Ridge with the aim to constrain the history of its source. The isotopic compositions we measured for the three sites overlap with the values obtained by Richardson et al. (1982a) and extend towards less radiogenic Sr and more radiogenic Pb and Nd isotopic compositions. We used our new trace element and radiogenic isotope (Hf, Nd, Pb and Sr) characterization in combination with the literature data to produce the simplest possible model that satisfies the trace element and isotopic constraints. Although the elevated 207Pb/204Pb with respect to 206Pb/204Pb predicts an ancient origin for EMI, none of the proposed origins had modeled it as such. The data is consistent with the EMI composition being formed by the addition of a melt to a mantle with bulk Earth-like composition followed by melt extraction of a low degree melt. The timing of these two events is such that the metasomatism has to have taken place prior to 4 Ga and the subsequent melt removal before 3.5 Ga. This confirms the expectation of an ancient character for the EMI component. The Walvis Ridge data shows two distinct two component mixing trends: one formed by the less enriched Site 527 and Site 528 basalts and one formed by the Site 525A basalts. The two trends have the EMI endmember in common. The less depleted end of the Site 527-Site 528 basalts is FOZO-like and can be explained by the addition of a recycled component (basaltic oceanic crust plus sediment). This recycled component was altered during subduction. The sense and magnitude of the chemical fractionation resulting from the subduction alteration are in agreement with dehydration experiments on basalts and sediment. Compared to other EMI like basalts the Walvis Ridge basalts have flatter REE patterns and show less fractionation between large ion lithophile and heavy REE elements. Using the isotopic compositions as constrains for the parent-daughter ratios we were able to model the trace element patterns of the basalts as melting between 5 and 10% for Site 525A and between 10 and 15% for the depleted end of the Site 528-Site 527 array. In all cases a significant portion of melting takes place in the garnet stability field.