576 resultados para Sedimentary facies

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grain-size study and analyses of bulk sediment and clay mineral composition of samples collected from the dominant lithologies recovered at ODP Site 646, located on the northern flank of the Eirik Ridge (Labrador Sea), show variations indicating that contour-following currents, linked to Norwegian Sea Overflow Water (NSOW), have controlled sedimentation since the early Pliocene. These currents were influential until the early Pleistocene, despite the onset of major ice-rafting at about 2.5 Ma. A major mineralogical change occurred during the late Miocene: a decrease in the smectite to illite and chlorite ratio and a decrease of the crystallinity of smectites. This change indicates a renewing of the source rocks, which could result from an important hydrological change at this time. This change also is depicted by grain-size data that suggest the bottom current influence should be set earlier than the Pliocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Claystones immediately overlying the early Eocene age ocean-floor basalt, cored at Ocean Drilling Program (ODP) Site 647, underwent hydrothermal and thermal alterations originating from the basalt, which resulted in changes in both the mineralogical and chemical composition of the sediments. Chlorites and higher magnesium and iron concentrations were found in the lowermost sediment sequence. Upcore, changes in the bulk chemical composition of the sediments become smaller, when compensated for variations in the carbonate content originating from biogenic and authigenic components. Chlorite disappears upcore, but still only part of the swelling clay minerals have survived the thermal influence. Thirty meters above the basalt, the clay mineralogy and chemical composition become uniform throughout the Paleogene section. Iron-rich smectites (i.e., nontronitic types), totally dominate the clay mineral assemblage. Biogenic components, responsible for the dominant part of the calcite and cristobalite contents, vary in amount in the upper part, and so do the authigenic carbonate and sulfide contents. Detrital components, such as kaolinite, illite, quartz, and feldspars, make up a very small proportion of the sediment record. The nontronitic smectites are believed to be authigenic, formed by a supply of iron from the continuous formation of ocean-floor basalt in the ridge area that reacted with the detrital and biogenic silicates and alumina silicates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The late Cenozoic deposits recovered at ODP Site 637 from the Iberian Abyssal Plain near the continental margin off northwestern Spain include three main facies groups. Turbidites are the dominant facies association (two-thirds of the total thickness), followed by pelagites (one-fourth), and subordinate amounts of contourites (one-tenth). Slump deposits occur locally in the upper Miocene and middle Pliocene. Turbidity currents and pelagic settling were the significant sediment depositional processes from the Pliocene to the Pleistocene, whereas bottom currents predominated during the late Miocene. Fine-grained, base-cut-out turbidites, normally starting with the Td division, are the most abundant sequence type. The pelagites include both carbonate-rich pelagic and hemipelagic facies. The two types of contourites, sandy and calcareous-rich or fine-grained terrigenous, record two types of bottom-current processes. The Cenozoic deposits at Site 637 show a general upward transition from contourites in the upper Miocene to turbidites in the Pliocene-Quaternary. The entire section is rhythmically bedded and has a poorly developed cyclic pattern defined by variations in the total carbonate content. The low sedimentation rates also show the same cyclicity, with lower values for the late Miocene and late Pliocene. This evolution reflects the predominant depositional processes and the dissolution of carbonates by a lower CCD during the late Miocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The site for CRP-2, 14 km east of Cape Roberts (77.006°S; 163.719°E), was selected to overlap the early Miocene strata cored in nearby CRP-1, and to sample deeper into the east-dipping strata near the western margin ofe he Victoria Land Basin to investigate Palaeogene climatic and tectonic history. CRP-2 was cored from 5 to 57 mbsf (metres below the sea floor) (core recovery 91 %), with a deviation resulting in CRP-2A being cored at the same site. CRP-2A reached down to 624mbsf (recovery 95%), and to strata with an age of c. 33-35 Ma. Drilling took place from 16 October to 25 November 1998, on 2.0-2.2 m of sea ice and through 178 m of water. Core fractures and other physical properties, such as sonic velocity, density and magnetic susceptibility, were measured throughout the core. Down-hole logs for these and other properties were run from 63 to 167 mbsf and subsequently from 200 to 623 mbsf, although density and velocity data could be obtained only to 440 mbsf because of hole collapse. Sonic velocity averages c. 2.0 km S-1 for the upper part of the hole, but there is an sharp increase to c. 3.0 km s-1 and also a slight angular unconformity, at 306 mbsf, corresponding most likely to the early/late Oligocene boundary (c. 28-30 Ma). Velocity then increases irregularly to around 3.6 km s-1 at the bottom of the hole, which is estimated to lie 120 m above the V4/V5 boundary. The higher velocities below 306 mbsf probably reflect more extensive carbonate and common pyrite cementation, in patches, nodules, bedding-parallel masses and as vein infills. Dip of the strata also increases down-hole from 3° in the upper 300 in to over 10° at the bottom. Temperature gradient is 21° k-1. Over 2 000 fractures were logged through the hole. Borehole televiewer imagery was obtained for the interval from 200 to 440 mbsf to orient the fractures for stress field analysis. Lithostratigraphical descriptions on a scale of 1:20 are presented for the full length of the core, along with core box images, as a 200 page supplement to this issue. The hole initially passed through a layer of muddy gravel to 5.5 mbsf (Lithological Sub-Unit or LSU 1.1), and then into a Quaternary diatom-bearing clast-rich diamicton to 21 mbsf (LSU 2. l), with an interval of alternating compact diamicton and loose sand, and containing a rich Pliocene foraminiferal fauna, to 27 mbsf (LSU 2.2). The unit beneath this (LSU 3.1) has similar physical properties (sonic velocity, porosity, magnetic susceptibility) and includes diamictites of similar character to those of LSU 2.1 and 2.2, but an early Miocene (c. 19 Ma) diatom assemblage at 28 mbsf (top of LSU 3.1) shows that this sub-unit is part of the older section. The strata beneath 27 mbsf, primary target for the project, extend from early Miocene to perhaps latest Eocene age, and are largely cyclic glacimarine nearshore to offshore sediments. They are described as 41 lithological sub-units and interpreted in terms of 12 recurrent lithofacies. These are 1) mudstone, 2) inter-stratified mudstone and sandstone, 3) muddy very fine to coarse sandstone, 4) well-sorted stratified fine sandstone, 5) moderately to well-sorted, medium-grained sandstone, 6) stratified diamictite, 7) massive diamictite, 8) rhythmically inter-stratified sandstone and mudstone, 9) clast-supported conglomerate, 10) matrix-supported conglomerate, 11) mudstone breccia and 12) volcaniclastic sediment. Sequence stratigraphical analysis has identified 22 unconformity-bounded depositional sequences in pre- Pliocene strata. They typically comprise a four-part architecture involving, in ascending order, 1) a sharp-based coarse-grained unit (Facies 6,7,9 or 10), 2) a fining-upward succession of sandstones (Facies 3 and 4), 3) a mudstone interval (Facies l), in some cases coarsening upward to muddy sandstones (Facies 3), and 4) a sharp-based sandstone dominated succession (mainly Facies 4). The cyclicity recorded by the strata is interpreted in terms of a glacier ice margin retreating and advancing from land to the west, and of rises and falls in sea level. Analysis of sequence periodicity awaits afirmer chronology. However, apreliminary spectral analysis of magnetic susceptibility for a deepwater mudstone within one of the sequences (from 339 to 347 mbsf) reveals ratios between hierarchical levels that are similar to those of the three Milankovitch orbital forcing periodicities. The strata contain a wide range of fossils, the most abundant being marine diatoms. These commonly form up to 5% of the sediment, though in places the core is barren (notably between 300 and 412 mbsf). Fifty samples out of 250 reviewed were studied in detail. The assemblages define ten biostratigraphical zones, some of them based on local or as yet undescribed forms. The assemblages are neritic, and largely planktonic, suggesting that the sea floor was mostly below the photic zone throughout deposition of the corcd sequence. Calcareous nannofossils, representing incursions of ocean surface waters, are much less common (72 out of 183 samples examined) and restricted to mudstone intervals a few tens of metres thick, but are important for dating. Foraminifera are also sparse (73 out of 135 samples) and represented only by calcareous benthic species. Changing assemblages indicate a shift from inshore environments in the early Oligocenc to outer shelf in the late Oligocenc, returning to inshore in the early Miocene. Marine palynomorplis yielded large numbers of well-preserved forms from most of the 116 samples examined. The new in situ assemblagc found last year in CRP-1 is extended down into the late Oligocene and a further new assemblage is found in the early Oligoccnc. Many taxa are new, and cannot us yet contribute to an improved understanding of chronology or ecology. Marine invertebrate macrofossils, mostly molluscs and serpulid tubes, are scattered throughout the core. Preservation is good in mudstones but poor in other lithologies. Climate on land is reflected in the content of terrestrial palynomorphs, which are extremely scarce down to c. 300 mbsf. Some forms are reworked, and others represent a low growing sparse tundra with at least one species of Nothofagus. Beneath this level, a significantly greater diversity and abundance suggests a milder climate and a low diversity woody vegetation in the early Oligocene, but still far short of the richness found in known Eocene strata of the region. Sedimentary facies in the oldest strata also suggest a milder climate in the oldest strata cored, with indications of substantial glacial melt-water discharges, but are typical of a coldcr climate in late Oligocene and early Miocene times. Clast analyses from diamictites reveal weak to random fabrics, suggesting either lack of ice-contact deposition or post-depositional modification, but periods when ice grounded at the drill site are inferred from thin zones of in-situ brecciated rock and soft-sediment folding. These are more common above c. 300 mbsf, perhaps reflecting more extensive glacial advances during deposition of those strata. Erosion of the adjacent Transantarctic Mountains through Jurassic basalt and dolerite-intruded Beacon strata into basement rocks beneath is recorded by petrographical studies of clast and sand grain assemblages. Core below 310 mbsf contains a dominance of fine-grained Jurassic dolerite and basalt fragments along with Beacon-derived coal debris and rounded quartz grains, whereas the strata above this level have a much higher proportion of basement derived granitoids, implying that the large areas of the adjacent mountains had been eroded to basement by the end of the early Oligocene. There is little indication of rift-related volcanism below 310 mbsf. Above this, however, basaltic and trachytic tephras are common, especially from 280 to 200 mbsf, from 150 to 46 mbsf, and in Pliocene LSU 2.2 from 21 to 27 mbsf. The largest volcanic eruptions generated layers of coarse (up to 1 cm) trachytic pumice lapilli between 97 and 114 mbsf. The thickest of these (1.2 m at 112 mbsf) may have produced an eruptive column extending tens of km into the stratosphere. A source within a few tens of km of the drill site is considered most likely. Present age estimates for the pre-Pliocene sequence are based mainly on biostratigraphy (using mainly marine diatoms and to a lesser extent calcareous nannofossils), with the age of the tephra from 112 to 114 mbsf (21.44k0.05 Ma from 84 crystals by Ar-Ar) as a key reference point. Although there are varied and well-preserved microfossil assemblages through most of the sequence (notably of diatoms and marine palynomorphs), they comprise largely taxa either known only locally or as yet undescribed. In addition, sequence stratigraphical analysis and features in the core itself indicate numerous disconformities. The present estimate from diatom assemblages is that the interval from 27 to 130 mbsf is early Miocene in age (c. 19 to 23.5 Ma), consistent with the Ar-Ar age from 112 to 114 mbsf. Diatom assemblages also indicate that the late Oligocene epoch extends from c. 130 to 307 mbsf, which is supported by late Oligocene nannofossils from 130 to 185 mbsf. Strata from 307 to 412 mbsf have no age-diagnostic assemblages, but below this early Oligocene diatoms and nannofossils have been recovered. A nannoflora at the bottom of the hole is consistent with an earliest Oligocene or latest Eocene age. Magnetostratigraphical studies based on about 1000 samples, 700 of which have so far undergone demagnetisation treatment, have provided a polarity stratigraphy of 12 pre-Pliocene magnetozones. Samples above 270 mbsf are of consistently high quality. Below this, magnetic behaviour is more variable. A preliminary age-depth plot using the Magnetic Polarity Time Scale (MPTS) and constrained by biostratigraphical data suggests that episodes of relatively rapid sedimentation took place at CRP-2 during Oligocene times (c. 100 m/My), but that more than half of the record was lost in a few major and many minor disconformities. Age estimates from Sr isotopes in shell debris and further tephra dating are expected to lead to a better comparison with the MPTS. CRP-2/2A has recorded a history of subsidence of the Victoria Land Basin margin that is similar to that found in CIROS-170 km to the south, reflecting stability in both basin and the adjacent mountains in late Cenozoic times, but with slow net accumulation in the middle Cenozoic. The climatic indicators from both drill holes show a similar correspondence, indicating polar conditions for the Quaternary but with sub-polar conditions in the early Miocene-late Oligocene and indications of warmer conditions still in the early Oligocene. Correlation between the CRP-2A core and seismic records shows that seismic units V3 and V4, both widespread in the Victoria Land Basin, represent a period of fluctuating ice margins and glacimarine sedimentation. The next drill hole, CRP-3, is expected to core deep into V5 and extend this record of climate and tectonics still further back in time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Messinian evaporitic succession recovered at ODP Sites 652, 653, and 654 in the Tyrrhenian Sea was generated under various environmental conditions which ranged from brackish to hypersaline, as deduced from the sedimentary facies and stable isotope compositions of the carbonate and sulfate deposits. Water in the basins had to be shallow to undergo such rapid and large geochemical variations. The marine influence was omnipresent in the basin at least during the deposition of sulfate evaporites; seawater or marine brines might have been supplied either by direct input into evaporitic lagoons as at Sites 653 and 654, or by subterraneous infiltration in marginal areas as at Site 652. Episodes of severe dilution by continental waters occurred frequently throughout Messinian times in the more basinal areas at Sites 653 and 654, while a fresh water body was standing permanently at Site 652. The high heat flow present at Site 652 was responsible for a major late authigenesis of iron-rich dolomites, which was initiated during the subsidence of the basin and ended before Pliocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the distribution of clay minerals and identification of their assemblages in relation to sedimentary facies encountered during DSDP Leg 63 drilling off southern California and Baja California. We also consider how these assemblages are determined by source areas and changes in general paleogeographic environments during different periods of sedimentation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continental margin off the La Plata Estuary (SE South America) is characterized by high fluvial sediment supply and strong ocean currents. High-resolution sediment-acoustic data combined with sedimentary facies analysis, AMS-14C ages, and neodymium isotopic data allowed us to reconstruct late Quaternary sedimentary dynamics in relation to the two major sediment sources, the La Plata Estuary and the Argentine margin. Sediments from these two provinces show completely different dispersal patterns. We show that the northward-trending La Plata paleo-valley was the sole transit path for the huge volumes of fluvial material during lower sea levels. In contrast, material from the Argentine margin sector was transported northwards by the strong current system. Despite the large sediment volumes supplied by both sources, wide parts of the shelf were characterized by either persistent non-deposition or local short-term depocenter formation. The location and formation history of these depocenters were primarily controlled by the interplay of sea level with current strength and local morphology. The high sediment supply was of secondary importance to the stratigraphic construction, though locally resulting in high sedimentation rates. Thus, the shelf system off the La Plata Estuary can be considered as a hydrodynamic-controlled end-member.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud ( 1992 ) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M 11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbonate-free portions of Upper Cretaceous to Holocene sediment samples from the Kerguelen Plateau in the southern Indian Ocean were investigated by X-ray diffraction. Downhole variations in the content of opal-A, opal-CT, quartz, feldspar, barite, and clinoptilolite were studied at Site 737 on the northern Kerguelen Plateau and at Sites 744 and 738 on the southern Kerguelen Plateau. The variation of these components reflects temporal changes in the depositional history of the Kerguelen Plateau as well as major differences in the sedimentary evolution between the northern plateau and the southern plateau. Carbonate is the dominant component in the pelagic sediments on the Kerguelen Plateau. In addition, biogenic opal sedimentation plays an important role throughout most of the sequence. A major increase in opal accumulation is documented at all sites in late Miocene time, which is in accordance with the well-known increase in silica productivity probably caused by a major cooling step. Because of its position near the Polar Frontal Zone, sediments from Site 737 show a more extensive opal deposition than at Sites 744 and 738. An earlier productivity pulse is documented at Site 744 on the southern plateau within the early Oligocene, following the initial phase of intense East Antarctic glaciation. This cooling event resulted in higher amounts of ice-rafted terrigenous quartz and, to a lesser extent, feldspar. With the exception of the Site 744 sediments, opal deposition in Paleogene and older sediments can be reconstructed only from the diagenetic transformation products of opal-CT and probably clinoptilolite. In contrast to the southern sequence, on the northern Kerguelen Plateau higher amounts of clinoptilolite and no opal-CT were found. These major differences in the diagenetic environments may be due to extensive volcanism in the northern area. The volcanic influence at Site 737 is well recorded by the higher feldspar content and higher amounts of volcanic glass shards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). The assemblages are characterized by a scarcity or absence of Tethyan taxa. The Berriasian-early Aptian radiolarian record recovered at Site 765 is unique in its density of well-preserved samples and in its faunal contents. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers of Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant species, whereas sand faunas are dominated by non-Tethyan species that have never been reported before. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast results from a difference in provenance, rather than from hydraulic sorting. Biostratigraphic dating proved difficult principally because of the paucity or even absence of (Tethyan) species used in published zonations. In addition, published zonations are contradictory and do not reflect total ranges of species. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin reflect restricted oceanic conditions for the latest Jurassic to Barremian time period. Neither the sedimentary facies nor the faunal associations bear any resemblance to sediment and radiolarian facies observed in typical Tethyan sequences. I conclude that the Argo Basin was paleoceanographically separated from Tethys during the Late Jurassic and part of the Early Cretaceous by its position at a higher paleolatitude and by enclosing landmasses, i.e., northeastern India and the Shillong Block, which were adjacent to the northwestern Australian margin before the opening. Assemblages recovered from radiolarian sand layers are dominated by non-Tethyan species that are interpreted as circumantarctic. Their sudden appearance in the late Berriasian/early Valanginian pre-dates the oceanization of the Indo-Australian break-up (Ml 1, late Valanginian) by about 5 m.y., but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and its adjacent margins probably were submerged deeply enough to allow an intermittent "spillover" of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Circumantarctic cold-water radiolarians transported into the Argo Basin upwelled along the margin and died en masse. Concomitant winnowing by bottom currents led to their accumulation in distinct radiolarite layers. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with the two pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic and Early Cretaceous seafloor spreading. The absence of typical Tethyan radiolarian species during the late Valanginian to late Hauterivian period is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (Mil) and rapid spreading between southeast India and western Australia. The reappearance and gradual increase in abundance and diversity of Tethyan forms along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian and early Aptian and may have resulted from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present grain size, granulometric statistical parameters, and calcium carbonate content of sediment samples from the summit and east and west flanks of southern Hydrate Ridge (Sites 1244-1250). These data are compared with magnetic susceptibility measurements from the same intervals. Bulk and clay mineralogy from Sites 1244 (east flank), 1247 (west flank), and 1250 (summit) are also presented. The integration of these data allows us to characterize the main sedimentary facies and composition of the Quaternary age sediments from southern Hydrate Ridge.