889 resultados para Sea-Ice Marginal-Ice-Zone Waves Modeling
em Publishing Network for Geoscientific
Resumo:
Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.
Resumo:
Barium in marine terrigenous surface sediments of the European Nordic Seas is analysed to evaluate its potential as palaeoproductivity proxy. Biogenic Ba is calculated from Ba and Al data using a conventional approach. For the determination of appropriate detrital Ba/Al ratios a compilation of Ba and Al analyses in rocks and soils of the catchments surrounding the Nordic Seas is presented. The resulting average detrital Ba/Al ratio of 0.0070 is similar to global crustal average values. In the southern Nordic Seas the high input of basaltic material with a low Ba/Al ratio is evident from high values of magnetic susceptibility and low Al/Ti ratios. Most of the Ba in the marine surface sediments is of terrigenous and not of biogenic origin. Variability in the lithogenic composition has been considered by the application of regionally varying Ba/Al ratios. The biogenic Ba values are comparable with those observed in the central Arctic Ocean, they are lower than in other oceanic regions. Biogenic Ba values are correlated with other productivity proxies and with oceanographic data for a validation of the applicability in paleoceanography. In the Iceland Sea and partly in the marginal sea-ice zone of the Greenland Sea elevated values of biogenic Ba indicate seasonal phytoplankton blooms. In both areas paleoproductivities may be reconstructed based on Ba and Al data of sediment cores.
Resumo:
The properties of snow on East Antarctic sea ice off Wilkes Land were examined during the Sea Ice Physics and Ecosystem Experiment (SIPEX) in late winter of 2007, focusing on the interaction with sea ice. This observation includes 11 transect lines for the measurement of ice thickness, freeboard, and snow depth, 50 snow pits on 13 ice floes, and diurnal variation of surface heat flux on three ice floes. The detailed profiling of topography along the transects and the d18O, salinity, and density datasets of snow made it possible to examine the snow-sea-ice interaction quantitatively for the first time in this area. In general, the snow displayed significant heterogeneity in types, thickness (mean: 0.14 +- 0.13 m), and density (325 +- 38 kg/m**3), as reported in other East Antarctic regions. High salinity was confined to the lowest 0.1 m. Salinity and d18O data within this layer revealed that saline water originated from the surface brine of sea ice in 20% of the total sites and from seawater in 80%. From the vertical profiles of snow density, bulk thermal conductivity of snow was estimated as 0.15 W/K/m on average, only half of the value used for numerical sea-ice models. Although the upward heat flux within snow estimated with this value was significantly lower than that within ice, it turned out that a higher value of thermal conductivity (0.3 to 0.4 W/K/m) is preferable for estimating ice growth amount in current numerical models. Diurnal measurements showed that upward conductive heat flux within the snow and net long-wave radiation at the surface seem to play important roles in the formation of snow ice from slush. The detailed surface topography allowed us to compare the air-ice drag coefficients of ice and snow surfaces under neutral conditions, and to examine the possibility of the retrieval of ice thickness distribution from satellite remote sensing. It was found that overall snow cover works to enhance the surface roughness of sea ice rather than moderate it, and increases the drag coefficient by about 10%. As for thickness retrieval, mean ice thickness had a higher correlation with ice surface roughness than mean freeboard or surface elevation, which indicates the potential usefulness of satellite L-band SAR in estimating the ice thickness distribution in the seasonal sea-ice zone.
Resumo:
Sea-ice growth and decay in Antarctica is one of the biggest seasonal changes on Earth, expanding ice cover from 4x10**6 km**2 to a maximum of 19x10**6 km**2 during the austral winter. Analyses of six marine sediment cores from the Scotia Sea, SW Atlantic, yield records of sea-ice migration across the basin since the Lateglacial. The cores span nearly ten degrees of latitude from the modern seasonal sea-ice zone to the modern Polar Front. Surface sediments in the cores comprise predominantly diatomaceous oozes and muddy diatom oozes that reflect Holocene conditions. The cores exhibit similar down-core stratigraphies with decreasing diatom concentrations and increasing magnetic susceptibility from modern through to the Last Glacial Maximum (LGM). Sediments in all cores contain sea-ice diatoms that preserve a signal of changing sea-ice cover and permit reconstruction of past sea-ice dynamics. The sea-ice records presented here are the first to document the position of both the summer and winter sea-ice cover at the Last Glacial Maximum (LGM) in the Scotia Sea. Comparison of the LGM and Holocene sea-ice conditions shows that the average winter sea-ice extent was at least 5° further north at the LGM. Average summer sea-ice extent was south of the most southerly core site at the LGM, and suggests that sea-ice expanded from approximately 61°S to 52°S each season. Our data also suggest that the average summer sea-ice position at the LGM was not the maximum extent of summer sea-ice during the last glacial. Instead, the sediments contain evidence of a pre-LGM maximum extent of summer sea-ice between ab. 30 ka and 22 ka that extended to ab. 59°S, close to the modern average winter sea-ice limit. Based on our reconstruction we propose that the timing of the maximum extent of summer sea-ice and subsequent retreat by 22 ka, could be insolation controlled and that the strong links between sea-ice and bottom water formation provide a potential mechanism by which Southern Hemisphere regional sea-ice dynamics at the LGM could have a global impact and promote deglaciation.
Resumo:
Zooplankton was studied on eight stations in the marginal ice zone (MIZ) of the Barents Sea, in May 1999, along two transects across the ice edge. On each station, physical background measurements and zooplankton samples were taken every 6 h over a 24 h period at five discrete depth intervals. Cluster analysis revealed separation of open water stations from all ice stations as well as high similarity level among replicates belonging to particular station. Based on five replicates per station, analysis of variance (ANOVA) confirmed significant differences (P < 0.05) in abundances of the main mesozooplankton taxa among stations. Relations between the zooplankton community and environmental parameters were established using redundancy analysis (CANOCO). In total, 55% of mesozooplankton variability within studied area was explained by eight variables with significant conditional effects: depth stratum, fluorescence, temperature, salinity, bottom depth, latitude, bloom situation, and ice concentration. GLM models supported supposition about clear and negative relationship between concentration of Oithona similis, and overall mesozooplankton diversity The analyses showed a dynamic relationship between mesozooplankton distribution and hydrological conditions on short-term scale. Furthermore, our study demonstrated that variability in the physical environment of dynamic MIZ of the Barents Sea has measurable effect on the Arctic pelagic ecosystem.
Resumo:
The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003-2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated.