74 resultados para Scinax hiemalis
em Publishing Network for Geoscientific
Resumo:
Ocean Drilling Program Leg 167 represents the first time since 1978 that the North American Pacific margin was drilled to study ocean history. More than 7500 m of Quaternary to middle Miocene (14 Ma) sediments were recovered from 13 sites, representing the most complete stratigraphic sequence on the California margin. Diatoms are found in most samples in variable abundance and in a moderately well-preserved state throughout the sequence, and they are often dominated by robust, dissolution-resistant species. The Neogene North Pacific diatom zonation of Yanagisawa and Akiba (1998, doi:10.5575/geosoc.104.395) best divides the Miocene to Quaternary sequences, and updated ages of diatom biohorizons estimated based on the geomagnetic polarity time scale of Cande and Kent (1995, doi:10.1029/94JB03098) are slightly revised to adjust the differences between the other zonations. Most of the early middle Miocene through Pleistocene diatom datum levels that have been proven to be of stratigraphic utility in the North Pacific appear to be nearly isochronous within the level of resolution constrained by sample spacing. The assemblages are characterized by species typical of middle-to-high latitudes and regions of high surface-water productivity, predominantly by Coscinodiscus marginatus, Stephanopyxis species, Proboscia barboi, and Thalassiothrix longissima. Latest Miocene through Pliocene assemblages in the region of the California Current, however, are intermediate between those of subarctic and subtropical areas. As a result, neither the existing tropical nor the subarctic (high latitude) zonal schemes were applicable for this region. An interval of pronounced diatom dissolution detected throughout the Pliocene sequence apparently correspond to a relatively warmer paleoceanographic condition resulting in a slackening of the southward flow of the California Current.
Resumo:
Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will improve the predictability of the climate change impacts on ecosystem functioning. For this purpose, trait assessment is a promising method compared to the traditional taxonomic approach, but it has not been applied earlier. In this study the response of a sub-arctic soil Collembola community to long-term (16 years) climate manipulation by open top chambers was assessed. The drought-susceptible Collembola community responded strongly to the climate manipulation, which substantially reduced soil moisture and slightly increased soil temperature. The total density of Collembola decreased by 51% and the average number of species was reduced from 14 to 12. Although community assessment showed species-specific responses, taxonomically based community indices, species diversity and evenness, were not affected. However, morphological and ecological trait assessments were more sensitive in revealing community responses. Drought-tolerant, larger-sized, epiedaphic species survived better under the climate manipulation than their counterparts, the meso-hydrophilic, smaller-sized and euedaphic species. Moreover it also explained the significant responses shown by four taxa. This study shows that trait analysis can both reveal responses in a soil fauna community to climate change and improve the understanding of the mechanisms behind them.
Resumo:
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.
Resumo:
The stratigraphic ranges and relative abundances of selected diatoms and silicoflagellates are presented from three Neogene sedimentary sequences from the subantarctic South Atlantic. These data were compiled from Hole 699A in the southwest South Atlantic and Holes 704A and 704B in the southeast South Atlantic. Thirty-five samples were examined from a 67.5-m section of Hole 699A, which is mostly late Miocene or younger in age. A total of 225 samples was examined from the upper 569.1-m lower Miocene to Quaternary section in Holes 704A and 704B. Although the partial census of the Site 704 sequences is only preliminary, it reveals that the Neogene is remarkably complete and serves as a reference for further detailed examination of an important biostratigraphic-magnetostratigraphic reference section for the Neogene record of the Southern Ocean.
Resumo:
A diatom biostratigraphy is presented for middle Miocene through Quaternary sediments recovered from the Chatham Rise east of New Zealand's South Island. The upper 590 m of the 639.5-m composite-section Site 594 represents approximately 16 m.y. and is characterized by moderately to very poorly preserved diatoms of antarctic to temperate affinity. Pliocene through Quaternary assemblages are poorly preserved and dominated by antarctic-subantarctic species which provide detailed biostratigraphic control. Recognized are 11 of 14 zones of the middle upper Miocene to Quaternary Neogene Southern Ocean diatom zonation (NSD 7-NSD 20) of Ciesielski (1983; this chapter). Four Neogene Southern Ocean diatom zones (NSD 3-NSD 6) are recognized in the lower middle Miocene to middle upper Miocene of Site 594. Assemblages of this interval have a mixed high-latitude and temperate affinity; however, poor preservation limits correlation to high- and temperate-latitude zonal schemes. Neogene North Pacific diatom zones and subzones of NNPD 3 through NNPD 5 (Barron, in press, b) are correlated to Neogene Southern Ocean diatom zones NSD 3 through NSD 7: the upper portions of the Actinocyclus ingens Zone (NNPD 3) is correlative to the upper Nitzschia maleinterpretaria Zone (NSD 3); the Denticulopsis lauta Zone (NNPD 4) and Subzones a and b are correlative to the lower Coscinodiscus lewisianus Zone (NSD 4); and the D. hustedtü-D. lauta Zone (NNPD 5) and its Subzones a through d encompass the upper C. lewisianus Zone (NSD 4), N. grossepunctata Zone (NSD 5), N. denticuloides Zone (NSD 6), and the lower D. hustedtii-D. lauta Zone (NSD 7). A major disconformity spans the late Gilbert to early Gauss Chron (3.9-2.8 Ma). A second disconformity brackets the Miocene/Pliocene boundary; the section missing covers late Chron 5 and the early Gilbert chron (5.5-4.6 Ma). The remainder of the siliceous-fossil-bearing Miocene sediments at Site 594 appear to be correlative to lower paleomagnetic Chronozone 5 through upper Chronozone 16. Uppermost lower Miocene or lowermost middle Miocene sediments in the basal 50 m of Hole 594A are barren of diatoms.
Resumo:
For the 2004-2006 growing seasons, we trapped a total of 6980 spiders (5066 adults, 1914 immatures) using pitfall traps at the Arctic Long Term Experimental Research (LTER) site in Toolik Lake, Alaska. We found 10 families and 51 putative species, with 45 completely identified, in two distinct habitats: Moist Acidic Tundra (MAT) and Dry Heath (DH) Tundra. We captured spiders belonging to the following families (number of species captured): Araneidae (1), Clubionidae (1), Dictynidae (1), Gnaphosidae (4), Linyphiidae (26), Lycosidae (11), Philodromidae (2), Salticidae (1), Theridiidae (1), and Thomisidae (3). Statistical comparisons of families captured at MAT and DH Tundra indicate that the habitats have significantly different spider communities (Chi Square Test: p < 0.0001, and Fisher's Exact Test: p = 0.0018). This finding is further supported by differences in similarity, diversity, evenness, and species richness between the two habitats. In this report, we present eight new state records and five extensions of previously described ranges for spider species. The following species are new state records for Alaska: Emblyna borealis (O.P.-Cambridge 1877), Horcotes strandi (Sytschevskaja 1935), Mecynargus monticola (Holm 1943), Mecynargus tungusicus (Eskov 1981), Metopobactrus prominulus (O.P. -Cambridge 1872), Poeciloneta theridiformis Emerton 1911, and Poeciloneta vakkhanka (Tanasevitch 1989). The following five species have been reported previously in Alaska, but not near Toolik Lake: Hypsosinga groenlandica Simon 1889, Gnaphosa borea Kulczyn'ski 1908, Gnaphosa microps Holm 1939, Haplodrassus hiemalis (Emerton 1909), and Islandiana cristata Eskov 1987. Pairwise similarity indices were calculated across 13 other arctic and subarctic spider communities and statistical tests show that all sites are dissimilar (p = 0.25). These results fit the general pattern of both the patchiness and habitat specificity of arctic spider fauna.
Resumo:
In this study isopod species of the Ross Sea were investigated. Literature until May 2008 was checked to provide an overview of all known and described species in the Ross Sea. This species checklist was then enlarged through material of the 19th Italica expedition in 2004. During this expedition for the first time a small mesh net (500 µm) was used. Nine thousand four hundred and eighty one isopod specimens were collected during this expedition. Through this material the number of isopod species in the Ross Sea increased from 42 to 117 species, which belong to 20 families and 49 genera. Fifty-six percentage of the isopods species collected during the Italica expedition are new to science. The zoogeography of the 117 species was investigated. A non-transformed binary presence-absence data matrix was constructed using the Bray-Curtis coefficient. The results were displayed in a cluster analysis and by nonmetric multidimensional scaling (MDS). This paper gives a first insight into the occurrence and distribution of the isopod species of the Ross Sea.
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
A thick Neogene section was recovered in the upper ~300 m of Ocean Drilling Program Hole 1138A, drilled on the Central Kerguelen Plateau in the Indian sector of the Southern Ocean. Sediment lithologies consist primarily of mixed carbonate and biosiliceous clays and oozes, with several thin (1-3 cm) tephra horizons. The tephras are glass rich, well sorted, and dominantly trachytic to rhyolitic in composition. Volcaniclastic material in these horizons is interpreted to have originated from Heard Island, 180 km northwest of Site 1138, and was likely emplaced through both primary ash fall and turbiditic, submarine flows. A Neogene age-depth model for Hole 1138A is constructed primarily from 36 diatom biostratigraphic datums. Nannofossil and planktonic foraminifer biostratigraphy provides supporting age information. Additionally, four high-precision 40Ar-39Ar ages are derived from ash and tephra horizons, and these radiometric ages are in close agreement with the biostratigraphic ages. The integrated age-depth model reveals a reasonably complete lower Miocene to upper Pleistocene section in Hole 1138A, with the exception of a ~1-m.y. hiatus at the Miocene/Pliocene boundary. Another possible hiatus is also identified at the Oligocene/Miocene boundary. High Neogene sedimentation rates and the presence of both calcareous and siliceous microfossils, combined with datable tephra horizons, establish Site 1138 as a suitable target for future drilling legs with paleoceanographic objectives. This report also proposes two new diatom species, Fragilariopsis heardensis and Azpeitia harwoodii, from Pliocene strata of Hole 1138A.
Resumo:
The present investigation was targeted at diatom composition studies in the surface sediments (0-1 cm) sampled in the Sea of Okhotsk and the northwest Pacific in the depth range from 130 to 6110 m. The taxonomic analysis, as well as the quantitative (the diatom cell abundance per sediment dry weight unit) content and ecological group definition, was applied. Ten diatom taxa are the main body (80-100%) of the diatom assemblages: Bacterosira bathyomphala, Chaetoceros spp. (spores), Actinocyclus curvatulus, Thalassiosira latimarginata (group), T. antarctica (spores), Neodenticula seminae, Rhizosolenia hebetata f. hiemalis, Thalassiothrix longissima, Coscinodiscus marginatus, Coscinodiscus oculus iridis. The relative content of these species reflects the sedimentation conditions for different parts of the sea: the shelf, the continental slope, the open sea, and the ocean. The highest diatom content (45.6.3-60.0 mln per g of dry weight) was found for the surface sediments in the central part of the Sea of Okhotsk and the continental slope of western Kamchatka.