2 resultados para Scientific method

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The operator effect is a well-known methodological bias already quantified in some taphonomic studies. However, the replicability effect, i.e., the use of taphonomic attributes as a replicable scientific method, has not been taken into account to the present. Here, we quantified for the first time this replicability bias using different multivariate statistical techniques, testing if the operator effect is related to the replicability effect. We analyzed the results reported by 15 operators working on the same dataset. Each operator analyzed 30 biological remains (bivalve shells) from five different sites, considering the attributes fragmentation, edge rounding, corrasion, bioerosion and secondary color. The operator effect followed the same pattern reported in previous studies, characterized by a worse correspondence for those attributes having more than two levels of damage categories. However, the effect did not appear to have relation with the replicability effect, because nearly all operators found differences among sites. Despite the binary attribute bioerosion exhibited 83% of correspondence among operators it was the taphonomic attributes that showed the highest dispersion among operators (28%). Therefore, we conclude that binary attributes (despite showing a reduction of the operator effect) diminish replicability, resulting in different interpretations of concordant data. We found that a variance value of nearly 8% among operators, was enough to generate a different taphonomic interpretation, in a Q-mode cluster analysis. The results reported here showed that the statistical method employed influences the level of replicability and comparability of a study and that the availability of results may be a valid alternative to reduce bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.