251 resultados para Schulz, Adolph
em Publishing Network for Geoscientific
Resumo:
The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El Niño-Southern Oscillation) to Heinrich Stadial 1 is poorly understood. Here we use Sr/Ca in a fossil Tahiti coral to reconstruct tropical South Pacific sea surface temperature around 15,000 years ago at monthly resolution. Unlike today, interannual South Pacific sea surface temperature variability at typical El Niño-Southern Oscillation periods was pronounced at Tahiti. Our results indicate that the El Niño-Southern Oscillation was active during Heinrich Stadial 1, consistent with climate model simulations of enhanced El Niño-Southern Oscillation variability at that time. Furthermore, a greater El Niño-Southern Oscillation influence in the South Pacific during Heinrich Stadial 1 is suggested, resulting from a southward expansion or shift of El Niño-Southern Oscillation sea surface temperature anomalies.
Resumo:
Mineralization of organic matter and the subsequent dissolution of calcite were simulated for surface sediments of the upper continental slope off Gabon by using microsensors to measure O2, pH, pCO2 and Ca2+ (in situ), pore-water concentration profiles of NO3-, NH4+, Fe2+, and Mn2+ and SO42- (ex situ), as well as sulfate reduction rates derived from incubation experiments. The transport and reaction model CoTReM was used to simulate the degradation of organic matter by O2, [NO3]-, Fe(OH)3 and [SO4]2-, reoxidation reactions involving Fe2+ and Mn2+, and precipitation of FeS. Model application revealed an overall rate of organic matter mineralization amounting to 50 µmol C cm**-2 yr**-1, of which 77% were due to O2, 17% to [NO3]- and 3% to Fe(OH)3 and 3% to [SO4]2-. The best fit for the pH profile was achieved by adapting three different dissolution rate constants of calcite ranging between 0.01 and 0.5% d-1 and accounting for different calcite phases in the sediment. A reaction order of 4.5 was assumed in the kinetic rate law. A CaCO3 flux to the sediment was estimated to occur at a rate of 42 g m**-2 yr**-1 in the area of equatorial upwelling. The model predicts a redissolution flux of calcite amounting to 36 g m**-2 yr**-1, thus indicating that ~90% of the calcite flux to the sediment is redissolved.
Resumo:
To study the consumption of dissolved organic matter (DOM) by bacteria living in untra-oligotrophic artificial or natural seawater, we analyzed the composition of DOM before (timepoint t0, directly after inoculation) and after (timepoint t2, 3 weeks of incubation) growth of the bacteria using Fourier transform ion cyclotron mass spectrometry (ESI FT-ICR-MS). The oligotrophic natural seawater used originates from the South Pacific Gyre. Our data show that the bacteria were able to utilize a variety of different organic compounds. These compounds belong to different chemical compound groups and likely fuel the bacterial energy, carbon and nitrogen requirements under the ultra-oligotrophic conditions.
Resumo:
The climate of Marine Isotope Stage (MIS) 11, the interglacial roughly 400,000 years ago, is investigated for four time slices, 416, 410, 400, and 394 ka. The overall picture is that MIS 11 was a relatively warm interglacial in comparison to preindustrial, with Northern Hemisphere (NH) summer temperatures early in MIS 11 (416-410 ka) warmer than preindustrial, though winters were cooler. Later in MIS 11, especially around 400 ka, conditions were cooler in the NH summer, mainly in the high latitudes. Climate changes simulated by the models were mainly driven by insolation changes, with the exception of two local feedbacks that amplify climate changes. Here, the NH high latitudes, where reductions in sea ice cover lead to a winter warming early in MIS 11, as well as the tropics, where monsoon changes lead to stronger climate variations than one would expect on the basis of latitudinal mean insolation change alone, are especially prominent. The results support a northward expansion of trees at the expense of grasses in the high northern latitudes early during MIS 11, especially in northern Asia and North America.
Resumo:
The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.
Resumo:
This study focused on the bacterial diversity associated with microbial mats of deep-sea cold seeps at the Norwegian continental margin. Study sites included the Storegga and Nyegga areas as well as the Håkon Mosby mud volcano, where the mats occurred at temperatures permanently close to the freezing point of seawater. Two visually different mat types, i.e. small gray mats and extensive white mats, were studied with the aim to determine the identity of the mat-forming sulfide oxidizers, and to investigate which environmental factors (e.g. sulfate reduction and methane oxidation rates) shown here could explain the observed diversity. Sequence data have been submitted to the EMBL database under accession No. FR847864-FR847887 (giant sulfur bacteria), No. FR827864 (Menez Gwen filament; see Supplementary Material) and No. FR875365-FR877509 (except FR875905; remaining partial sequences).
Resumo:
Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997, doi:10.1029/97JC00880]. During interstadials, summer sea surface temperatures (SSTsu) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ~36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SSTsu dropped to 2°-4°C, in phase with SSS drops by ~1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic ?18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles.
Resumo:
The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff". Time series of the Uk'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.