271 resultados para Scholl adminstration

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcareous nannofossils were studied in sedimentary successions recovered from two holes on the Detroit Seamount in the northwestern Pacific Ocean. Preservation of calcareous nannoflora assemblages varies from poor to good throughout the sediments recovered from both Holes 1203A and 1204A. Biostratigraphic investigation allowed the identification of 19 nannofossil zones in Hole 1203A and 7 in Hole 1204A. The sedimentary cover in Hole 1203A ranges from lower Eocene (Zone NP12) to upper Miocene (Zone NN9). The sedimentary interval investigated directly overlying the basalt recovered at Hole 1204A is late Campanian in age (Zones CC22-CC23), and the top of the section is middle Eocene (Zone NP15) in age. Major unconformities were observed in Hole 1204A between upper Campanian (Zones CC22-CC23) and lower Thanetian (Zone NP7) sediments and between upper Thanetian (Zone NP8) and upper Ypresian (Zone NP12) sediments.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cloud samples for the isotopic analysis were collected in the framework of the Hill Cap Cloud Thuringia 2010 (HCCT-2010) campaign on Schmücke (50° 39'N/ 10° 46'E, 937 m a.s.l.; Germany) in September and October 2010 with a three-stage Caltech Active Strand Cloudwater Collector (CASCC) during 13 different cloud events with a temporal resolution of 1 to 3 hours. In a first step, we ensured that no additional fractionation occurred during sampling with the CASCC. The d values of the three sizes classes of the CASCC (4 µm to 16 µm, 16 µm to 22 µm and >22 µm) did not differ significantly, revealing that the cloud droplets of different sizes quickly equilibrate their delta value with the one of the surrounding vapor. delta values in the cloud droplets varied from -77 per mil to -15 per mil in d2H and from -12.1 per mil to -3.9 per mil in d18O and were fitted by d2H =7.8*d18O +13*10**-3. delta values decreased with temperature as well as towards the end of the campaign, representing a seasonal trend which is known from d values in precipitation. The deuterium excess of the cloud samples was generally higher than the Local Meteoric Water Line of the closest GNIP (Global Network of Isotopes in Precipitation) station. Rain decreases its deuterium excess during falling through an unsaturated air column, while the cloud droplets conserve the deuterium excess of the initial evaporation and thus have been found to be a good indicator for the airmass source region: higher deuterium excess was measured for polar air masses and lower deuterium excess for Mediterranean air masses. Changes in d values during one cloud event were up to 3.6 per mil (d2H) and 0.23 per mil (d18O), except for frontal passages, which were associated with increases of ~6 per mil per hour (d2H) and ~0.6 per mil per hour (d18O). Using a box model, we showed that the influence of condensation only was able to explain the variation in the isotope signal of two cloud passages. Consequently, we deduced that the water vapor "feeding" the cloud advected the measured changes. A trajectory analysis and moisture source diagnostic revealed that it is very likely that the variations were either related to rain out along the trajectories or to meteorological changes in the moisture source region. This was the first study using stable water isotopologues in cloud water manifesting their potential in the context of atmospheric water vapor circulation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).