11 resultados para Salvia officinalis L.

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future atmospheric CO2 levels will most likely have complex consequences for marine organisms, particulary photosynthetic calcifying organisms. Corallina officinalis L. is an erect calcifying macroalga found in the inter- and subtidal regions of temperate rocky coastlines and provides important substrate and refugia for marine meiofauna. The main goal of the current study was to determine the physiological responses of C. officinalis to increased CO2 concentrations expected to occur within the next century and beyond. Our results show that growth and production of inorganic material decreased under high CO2 levels, while carbonic anhydrase activity was stimulated and negatively correlated to algal inorganic content. Photosynthetic efficiency based on oxygen evolution was also negatively affected by increased CO2. The results of this study indicate that C. officinalis may become less competitive under future CO2 levels, which could result in structural changes in future temperate intertidal communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

B Body wet weight and mantle length of juvenile Sepia officinalis were monitored over a peroid of five weeks. The animals had hatched in our aquarium system in Bremerhaven, Germany at 16°C and were descendants of individuals collected in the Oosterschelde estuary, Netherlands. Animals were kept in natural sea water at 10 or 17°C and fed small live shrimp (Palaemonetes varians) ad libitum daily. At the end of the experiment some animals kept at 17°C were sacrificed using ethanol. Haemolymph was withdrawn from the head vein using syringe and needle. Haemolymph samples were stored at -20°C until Na+, Cl-, K+, Mg2+, Ca2+ and SO42- concentrations were determined using ion chromatography. Mean body weight more that tripled at 17°C during the investigation period, while growth was impared by exposue to 10°C. Haemolymph ion concentrations were similar to those in sea water, except for sulphate. The concentration of this ion in the haemolymph was more that ten times lower than in sea water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the eurythermal cuttlefish Sepia officinalis, performance depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation and adaptation that could be crucial for the cuttlefish's competitive success in variable environments. Two genetically distinct cuttlefish populations were acclimated to 11, 16 and 21°C. Subsequently, skinned and permeabilised heart fibres were used to assess mitochondrial functioning by means of high-resolution respirometry and a substrate-inhibitor protocol, followed by measurements of cardiac citrate synthase and cytosolic enzyme activities. Temperate English Channel cuttlefish had lower mitochondrial capacities but larger hearts than subtropical Adriatic cuttlefish. Warm acclimation to 21°C decreased mitochondrial complex I activity in Adriatic cuttlefish and increased complex IV activity in English Channel cuttlefish. However, compensation of mitochondrial capacities did not occur during cold acclimation to 11°C. In systemic hearts, the thermal sensitivity of mitochondrial substrate oxidation was high for proline and pyruvate but low for succinate. Oxygen efficiency of catabolism rose as temperature changed from 11 to 21°C via shifts to oxygen-conserving oxidation of proline and pyruvate and via reduced relative proton leak. The changes observed for substrate oxidation, mitochondrial complexes, relative proton leak and heart mass improve energetic efficiency and essentially seem to extend tolerance to high temperatures and reduce associated tissue hypoxia. We conclude that cuttlefish sustain cardiac performance and, thus, systemic oxygen delivery over short- and long-term changes of temperature and environmental conditions by multiple adjustments in cellular and mitochondrial energetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed analyses of the Lake Van pollen, Ca/K ratio and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial (~75-15 ka BP). The climate within the last glacial was cold and dry, with low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (~28-14.5 ka BP) dominated by the highest values of xerophytic steppe vegetation. Our high-resolution multi proxy record shows rapid expansions and contractions of tree populations that reflects variability in temperature and moisture availability. This rapid vegetation and environmental changes can be linked to the stadial-interstadial pattern of the Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores. Periods of reduced moisture availability were characterized by enhanced xerophytic species and high terrigenous input from the Lake Van catchment area. Furthermore, comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be explained by the strength and position of the westerlies, which is responsible for the supply of humidity in eastern Anatolia. Influenced by diverse topography of the Lake Van catchment, larger DO interstadials (e.g. DO 19, 17-16, 14, 12 and 8) show the highest expansion of temperate species within the last glacial. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris (IRD) in marine sediments, are identified in eastern Anatolia by AP values not lower and high steppe components not more abundant than during DO stadials. In addition, this work is a first attempt to establish a continuous microscopic charcoal record over the last glacial in the Near East, which documents an initial immediate response to millennial-scale climate and environmental variability and enables us to shed light on the history of fire activity during the last glacial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution multi-proxy record from Lake Van, eastern Anatolia, derived from a lacustrine sequence cored at the 357 m deep Ahlat Ridge (AR), allows a comprehensive view of paleoclimate and environmental history in the continental Near East during the last interglacial (LI). We combined paleovegetation (pollen), stable oxygen isotope (d18Obulk) and XRF data from the same sedimentary sequence, showing distinct variations during the period from 135 to 110 ka ago leading into and out of full interglacial conditions. The last interglacial plateau, as defined by the presence of thermophilous steppe-forest communities, lasted ca. 13.5 ka, from ~129.1-115.6 ka BP. The detailed palynological sequence at Lake Van documents a vegetation succession with several climatic phases: (I) the Pistacia zone (ca. 131.2-129.1 ka BP) indicates summer dryness and mild winter conditions during the initial warming, (II) the Quercus-Ulmus zone (ca. 129.1-127.2 ka BP) occurred during warm and humid climate conditions with enhanced evaporation, (III) the Carpinus zone (ca. 127.2-124.1 ka BP) suggest increasingly cooler and wetter conditions, and (IV) the expansion of Pinus at ~124.1 ka BP marks the onset of a colder/drier environment that extended into the interval of global ice growth. Pollen data suggest migration of thermophilous trees from refugial areas at the beginning of the last interglacial. Analogous to the current interglacial, the migration documents a time lag between the onset of climatic amelioration and the establishment of an oak steppe-forest, spanning 2.1 ka. Hence, the major difference between the last interglacial compared to the current interglacial (Holocene) is the abundance of Pinus as well as the decrease of deciduous broad-leaved trees, indicating higher continentality during the last interglacial. Finally, our results demonstrate intra-interglacial variability in the low mid-latitudes and suggest a close connection with the high-frequency climate variability recorded in Greenland ice cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suporting Information 1; Herbarium Corallina officinalis samples of the Natural History Museum (BM) analysed for the present study. Where the same NHM barcodes are provided for more than one sample, multiple samples were present under the same barcode in the herbarium. (-) indicates samples were not barcoded in the NHM (BM) system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acidification of ocean surface waters by anthropogenic carbon dioxide (CO2) emissions is a currently developing scenario that warrants a broadening of research foci in the study of acid-base physiology. Recent studies working with environmentally relevant CO2 levels, indicate that some echinoderms and molluscs reduce metabolic rates, soft tissue growth and calcification during hypercapnic exposure. In contrast to all prior invertebrate species studied so far, growth trials with the cuttlefish Sepia officinalis found no indication of reduced growth or calcification performance during long-term exposure to 0.6 kPa CO2. It is hypothesized that the differing sensitivities to elevated seawater pCO2 could be explained by taxa specific differences in acid-base regulatory capacity. In this study, we examined the acid-base regulatory ability of S. officinalis in vivo, using a specially modified cannulation technique as well as 31P NMR spectroscopy. During acute exposure to 0.6 kPa CO2, S. officinalis rapidly increased its blood [HCO3] to 10.4 mM through active ion-transport processes, and partially compensated the hypercapnia induced respiratory acidosis. A minor decrease in intracellular pH (pHi) and stable intracellular phosphagen levels indicated efficient pHi regulation. We conclude that S. officinalis is not only an efficient acid-base regulator, but is also able to do so without disturbing metabolic equilibria in characteristic tissues or compromising aerobic capacities. The cuttlefish did not exhibit acute intolerance to hypercapnia that has been hypothesized for more active cephalopod species (squid). Even though blood pH (pHe) remained 0.18 pH units below control values, arterial O2 saturation was not compromised in S. officinalis because of the comparatively lower pH sensitivity of oxygen binding to its blood pigment. This raises questions concerning the potentially broad range of sensitivity to changes in acid-base status amongst invertebrates, as well as to the underlying mechanistic origins. Further studies are needed to better characterize the connection between acid-base status and animal fitness in various marine species.