3 resultados para Saltwater encroachment.

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrogeological conditions are unfavourable for a sufficient supply of drinking-water. The small size of the catchment area, the large hydraulic gradient inside the steep 'Buntsandstein'-cliff and the low geodetic level of the 'Dune Island' and the foreshore at the eastern foot of the cliff do not allow the formation and recharge of a sufficiently exploitable geodetic freshwater dome over the underlying saltwater. This means that until recently the provision of sufficient drinking-water for the island's inhabitants, for its garrison as well as for visiting ships was a problem. This problem has now been solved by the desalination of seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key feature of Greece is the large amount of historical and archaeological records. The sedimentary record of the Etoliko Lagoon, Aetolia, Western Greece, offers an ideal opportunity to study human-environment interaction and to disentangle natural and anthropogenic imprints in the sedimentary record. By applying an interdisciplinary approach of combining geoscientific methods (XRF, LOI, grain size analysis) with archaeological and historical records, the 8.8 m long sedimentary sequence ETO1C reveals the palaeoenvironmental history of the lagoon and its catchment since 11,670 cal BP. With a thorough chronology based on 14C age-depth-modelling including varve counting, different evolutionary stages were put in a chronological context. These stages include a lake period (11,670-8310 cal BP) followed by a period of sporadic saltwater intrusion (8310-1350 cal BP) as a result of continuing transgression. Phases of limnic predominance associated with freshwater inflow of episodically activated distributaries (around 5230 cal BP) still occurred. By 1350 cal BP, ongoing sea level rise had connected the lagoons of Etoliko and Messolonghi and freshwater influence had ceased. With the onset of settlement activity in the Late Helladic (1700-1100 cal BC) humans took advantage of the prevailing environmental landscape. A sudden increase in coarse sedimentation correlates with the history of human occupation with its peak of prosperity from the Late Helladic until the end of the Hellenistic Period (30 cal BC).